
SCHOLAR Study Guide

SQA Higher 2005 Computing
Unit 2

Interactive University

Edinburgh EH12 9QQ, United Kingdom.

First published 2001 by Heriot-Watt University

This edition published in 2005 by Interactive University

Copyright c� 2005 Heriot-Watt University

Members of the SCHOLAR Forum may reproduce this publication in whole or in part for
educational purposes within their establishment providing that no profit accrues at any stage,
Any other use of the materials is governed by the general copyright statement that follows.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, without written permission from the publisher.

Heriot-Watt University accepts no responsibility or liability whatsoever with regard to the
information contained in this study guide.

SCHOLAR is a programme of Heriot-Watt University and is published and distributed on its
behalf by Interactive University.

British Library Cataloguing in Publication Data

Interactive University

SCHOLAR Study Guide Unit 2: Computing

1. Computing

ISBN XXXXXXXXXXX

Typeset by: Interactive University, Wallace House, 1 Lochside Avenue, Edinburgh, EH12 9QQ.

Printed and bound in Great Britain by Graphic and Printing Services, Heriot-Watt University,
Edinburgh.

Part Number XXXXXXX

i

Contents

1 Introduction to Software Development Process 1
1.1 Introduction . 2
1.2 Overview . 2
1.3 Real-life programs and classroom programming 4
1.4 Computing disasters . 5
1.5 Information sources on computing disasters 6
1.6 Well planned programs . 7
1.7 Summary . 8
1.8 End Of Topic Test . 8

2 Features of Software Development Process 9
2.1 Introduction . 11
2.2 Preamble . 11
2.3 The need for iteration . 13
2.4 Analysis in closer detail . 20
2.5 Design in closer detail . 21
2.6 Implementation in closer detail . 24
2.7 Testing in closer detail . 25
2.8 Documentation in closer detail . 28
2.9 Evaluation in more detail . 30
2.10 Maintenance in closer detail . 31
2.11 Weaknesses of the Waterfall Model . 33
2.12 Summary . 33
2.13 End of topic test . 34

3 Design notation, data flow and evaluation 35
3.1 Introduction . 37
3.2 Tools and Techniques . 38
3.3 Design methodologies and notations . 38
3.4 Test Data . 44
3.5 Structured Listing . 48
3.6 Error Reporting . 48
3.7 Module libraries . 50
3.8 Software characteristics . 50
3.9 Summary . 51
3.10 End of topic test . 52

4 Personnel 53
4.1 Introduction . 54

ii CONTENTS

4.2 Personnel . 54
4.3 The Client . 54
4.4 The Project Manager . 55
4.5 The Systems Analyst . 56
4.6 The Programming Team . 60
4.7 Independent Testing Group . 61
4.8 Summary . 62
4.9 End of topic test . 63

5 Languages and Environments 65
5.1 Introduction . 67
5.2 Programming Languages . 67
5.3 Classification of High Level Languages 68
5.4 Procedural / Imperative languages . 70
5.5 Declarative languages . 73
5.6 Event-driven languages . 74
5.7 Scripting languages . 76
5.8 Other Language Types . 82
5.9 Translation methods . 82
5.10 Summary . 85
5.11 End of topic test . 85

6 High Level Language Constructs 1 87
6.1 Introduction . 90
6.2 The Programming Environment . 90
6.3 Building applications . 92
6.4 Program Structure . 100
6.5 Data types . 103
6.6 Visual Basic Nomenclature . 104
6.7 Declaring Variables . 106
6.8 Declaring constants . 110
6.9 Variables and scope . 117
6.10 Operators . 120
6.11 Programming constructs . 123
6.12 The IF Statement . 124
6.13 The If.. Then.. Else Statement . 127
6.14 Nested IF Statements (optional) . 138
6.15 If...Then...ElseIf (optional) . 140
6.16 The Select Case Statement . 145
6.17 Summary . 151
6.18 End of topic test . 151

7 High Level Language Constructs 2 153
7.1 Introduction . 155
7.2 Iteration . 155
7.3 Formatting output . 166
7.4 Do Loops . 167
7.5 Arrays . 181
7.6 Summary . 201
7.7 End of topic test . 201

c� HERIOT-WATT UNIVERSITY 2005

CONTENTS iii

8 Procedures and Standard Algorithms 203
8.1 Introduction . 205
8.2 Modularity . 206
8.3 Procedures and Functions . 206
8.4 Functions . 219
8.5 Review Questions . 224
8.6 Standard Algorithms . 225
8.7 Summary . 236
8.8 End of topic test . 236

Glossary 237

Hints for activities 246

Answers to questions and activities 247
2 Features of Software Development Process 247
3 Design notation, data flow and evaluation 249
4 Personnel . 250
5 Languages and Environments . 251
6 High Level Language Constructs 1 . 252
7 High Level Language Constructs 2 . 253
8 Procedures and Standard Algorithms 255

c� HERIOT-WATT UNIVERSITY 2005

Acknowledgements

Thanks are due to the members of Heriot-Watt University’s SCHOLAR team who planned and
created these materials, and to the many colleagues who reviewed the content.

Programme Director: Professor R R Leitch

Series Editor: Professor J Cowan

Subject Directors: Professor P John (Chemistry), Professor C E Beevers (Mathematics), Dr P
J B King (Computing), Dr P G Meaden (Biology), Dr M R Steel (Physics), Dr C G Tinker
(French)

Subject Authors:

Biology: Dr J M Burt, Ms E Humphrey, Ms L Knight, Mr J B McCann, Mr D Millar, Ms N Randle,
Ms S Ross, Ms Y Stahl, Ms S Steen, Ms N Tweedie

Chemistry: Mr M Anderson, Mr B Bease, Dr J H Cameron, Dr P Johnson, Mr B T McKerchar,
Dr A A Sandison

Computing: Mr I E Aitchison, Dr P O B Holt, Mr S McMorris, Mr B Palmer, Ms J Swanson, Mr
A Weddle

Engineering: Mr J Hill, Ms H L Jackson, Mr H Laidlaw, Professor W H Müller

French: Mr M Fermin, Ms B Guenier, Ms C Hastie, Ms S C E Thoday

Mathematics: Mr J Dowman, Ms A Johnstone, Ms O Khaled, Mr C McGuire, Ms J S Paterson,
Mr S Rogers, Ms D A Watson

Physics: Mr J McCabe, Mr C Milne, Dr A Tookey, Mr C White

Learning Technology: Dr W Austin, Ms N Beasley, Ms J Benzie, Dr D Cole, Mr A Crofts, Ms S
Davies, Mr A Dunn, Mr M Holligan, Dr J Liddle, Ms S McConnell, Mr N Miller, Mr N Morris, Ms E
Mowat, Mr S Nicol, Dr W Nightingale, Mr R Pointon, Mr D Reid, Dr R Thomas, Dr N Tomes, Ms
J Wang, Mr P Whitton

Cue Assessment Group: Ms F Costigan, Mr D J Fiddes, Dr D H Jackson, Mr S G Marshall

SCHOLAR Unit: Mr G Toner, M G Cruse, Ms A Hay, Ms C Keogh, Ms B Laidlaw, Mr J Walsh

Media: Mr D Hurst, Mr P Booth, Mr G Cowper, Mr C Gruber, Mr D S Marsland, Mr C Nicol, Mr
C Wilson

Administration: Ms L El-Ghorr, Dr M King, Dr R Rist,

We would like to acknowledge the assistance of the education authorities, colleges, teachers
and students who helped to plan the SCHOLAR programme and who evaluated these
materials.

Grateful acknowledgement is made for permission to use the following material in the
SCHOLAR programme:

To the Scottish Qualifications Authority for permission to use Past Papers assessments.

The financial support from the Scottish Executive is gratefully acknowledged.

All brand names, product names, logos and related devices are used for identification purposes
only and are trademarks, registered trademarks or service marks of their respective holders.

1

Topic 1

Introduction to Software
Development Process

Contents

1.1 Introduction . 2

1.2 Overview . 2

1.2.1 Software engineering . 2

1.2.2 Software development . 3

1.3 Real-life programs and classroom programming 4

1.4 Computing disasters . 5

1.5 Information sources on computing disasters . 6

1.6 Well planned programs . 7

1.7 Summary . 8

1.8 End Of Topic Test . 8

Prerequisite knowledge

There are no prerequisites for this introductory topic.

Learning Objectives

� understand what is meant by ’software engineering’

� understand what is meant by ’software development’

� recognise the professional issues that are involved in the development of a
computer system

� understand the need for software development

� understand what is meant by well planned programs.

2 TOPIC 1. INTRODUCTION TO SOFTWARE DEVELOPMENT PROCESS

1.1 Introduction

In this topic you will be introduced to the Software Development Process and the reasons
why such approaches to the topic exist. The subject has its roots in software engineering
and this is discussed from a historical perspective where the magnitude of the processes
involved are made clear. This leads on to the need for well-planned programs together
with the associated problems and preferred solutions.

1.2 Overview

Computer systems are now an important aspect of everyday life. Indeed it would be
difficult to visualise a world without the day to day impact that computers have on our
lives: cash machines, supermarket tills, petrol pumps, travel tickets, payslips and bills,
the Internet and e-commerce and so on.

The first few topics of this unit describe the development of software. The development
of software follows a definite process, known as the software development process
(SDP). It introduces a few of the models which are used to represent the software
development process and describes in detail the traditional model.

A model allows users to understand the development process and the stages involved
in the development sequence. The model aids management and good management
helps produce a higher quality product, possibly in a shorter period of time and at
less cost. In the last thirty years or so a number of models have evolved, each
with particular strengths and weaknesses, to make the analysis and design stages of
software development more manageable.

Before looking at some of these models we should take a brief look at why software
development evolved as an engineering process. This is best understood by looking at
the sorts of things that have gone wrong in large software developments.

1.2.1 Software engineering

In this topic we want to consider good practice in developing programs within the
software development environment. To do so it is useful to put software development
into a wider context, as it is part of a subject known as software engineering.

The ideas behind software engineering are to provide an approach to the development
of software by designing and building software systems that are:

� of high quality

� cost effective

� produced to specification

� delivered on time

The idea is to bring together a variety of tools, techniques and methods which will help
create reliable software. By these means programs can be designed to be maintainable
- that is they are presented and documented so clearly that they can be updated by

c� HERIOT-WATT UNIVERSITY 2005

1.2. OVERVIEW 3

another programmer at some future time.

1.2.2 Software development

There are many reasons why software development is required. Some include:

1. increased complexity and sophistication of computing systems

2. escalating costs of software systems

3. unreliable software systems produced without planning

4. poorly performing software

5. difficulty in maintaining the software

If you have been involved in any computer systems before you started this course, you
are probably nodding your head, thinking of all the computing disasters you have seen.
But if you are new to computing, then maybe the table in the next topic might help you
to see the differences between real-life programs and the sort of programs you are (or
will be) writing. If you understand the problems of large-scale programming, the need
for software development will be obvious. Without this understanding, it is all too easy
to dismiss software development as a not-very-useful exercise, but one which will give
you a Higher credit.

c� HERIOT-WATT UNIVERSITY 2005

4 TOPIC 1. INTRODUCTION TO SOFTWARE DEVELOPMENT PROCESS

1.3 Real-life programs and classroom programming

What are the differences between the two? Table 1.1 should give you an indication

Table 1.1: Real programs vs classroom programs

Real-life Programs Classroom programs

...are large and complex. It is difficult to
hold their details in your mind. Because of
this you have to specify them formally.

...are small and simple. They can be
described in a few sentences and
probably understood in minutes.

The main difficulty is with (a)
understanding the problem; (b) ensuring
that your understanding actually matches
the users’ requirements; (c) designing a
solution.

The main difficulty you have is with writing
the solution in a programming language
which you are just learning, and getting
your program to work correctly.

Development time is long. Maybe as long
as 5 years. It is impossible to remember
all aspects of a program for this length of
time, so you have to document the design
decisions and all your changes.

Development time is short. You should be
able to get the core of the solution
working in a few hours. Consequently you
can hold details of all aspects of the
program in your head. Documentation is
skimpy or non-existent.

Testing is going to be long, intensive and
exhaustive. It will be done by a separate
team whose function is solely to test
programs and find faults.

Your testing is likely to be fairly basic.

A program’s lifetime may be decades, and
it may undergo changes (called
’maintenance’). The maintenance is
probably going to be done by someone
who has not written the original program
and knows nothing about the original
design decisions unless they have been
documented.

The life of the program is short - only long
enough for you to pass! Similarly, the
documentation only has to stand up to the
examiner’s scrutiny.

Programs are written for use by other
people who might have little
understanding of computers.

The programs are not intended to be
used.

Real-life programs are written for use by clients who require the software systems
to help them do their jobs. They probably expect them to work like any complicated
electrical appliance such as a TV. You switch it on and it works. Change channels and
the channels change. The brightness and other controls do what they are supposed to
do, without stopping the TV from working or having some unexpected side-effects.

The programmers’ goal is to produce software as robust and easy to use as a TV. In
reality this is going to be impractical, but when you design programs this should be
something you need to bear in mind. For example, keyboard input should be checked
and incorrect input rejected. But this is not enough; you need to give a message to the
user to help them type the correct information next time. If you do not do this, you leave
them floundering; they know what they typed is wrong, but have no idea why or what the
correct input should be. Any other errors which arise in the program should be clearly

c� HERIOT-WATT UNIVERSITY 2005

1.4. COMPUTING DISASTERS 5

notified to the user in common-sense language.

1.4 Computing disasters

It has been said "Computers make very fast, very accurate mistakes". While this may
be undeniably true it has to be said that complacency still exists in the use of computers
and the programs running on them.

Software development is important because in its absence you are bound to have a
disaster in a project of any great size. Large projects demand a large investment of
money, time and resources before any returns are possible.

Consider the following:

� One in five software systems fail to deliver to the agreed specification

� Software maintenance is the single highest computer-related cost for many
companies

� Some systems can take many years to develop running the risk of obsolescence
before they are even commissioned.

Naturally a fair bit of planning goes into them. But perhaps the planning is not all it
might be because, even with the best will in the world, things can go terribly wrong. The
list below contains a few examples of computing disasters that could be attributed to
complexity and the need for better planning:

1. Ariane 501 - on the 4th June 1996 Ariane 501 exploded 40 seconds after takeoff
due to a software bug. This was an incidence of data conversion of a too large
number!

2. Y2K Problem - The Millennium Bug - problems with the way the date was stored
on computers

3. NASA Mars Lander - problems in software occurred when different measurement
units were used - there was confusion between pounds and kilograms

4. Home Office Immigration System - Ordered in 1996 and supplied eighteen
months late by Siemens in 1999 at a cost of �80 million. It was supposed to
speed the processing of asylum claims up but could not cope with the backlog and
did the very opposite. It was finally scrapped in 2001. Government ministers were
blamed for ordering the "over-complex" system in the first place

5. London Ambulance Service - in 1992 they took on a despatch system that failed
calamitously. Ambulances were sent to the wrong place, did not arrive when
expected and the system generally caused major disruption to patient care and
services

c� HERIOT-WATT UNIVERSITY 2005

6 TOPIC 1. INTRODUCTION TO SOFTWARE DEVELOPMENT PROCESS

6. Passport Agency - in 1999 a new system (Siemens again) that worked much less
efficiently than the system it replaced. Delays went up from two weeks to seven,
with a backlog of more than half a million passports. This cost the taxpayers �12
million and forced many people to cancel holidays. The Government increased
passport charges to recoup wasted money from this system

7. Post Office swipecard system - a one billion pound project that ICL were to
install in throughout Britain. It began in 1996 and was stopped in 1999, having
been, as the official report said, "blighted from the outset"

8. French national library - received a new system (two years late and 40% over
budget) which worked so badly that librarians walked out

9. ATMs in Germany - during the changeover from Marks to Euros in 2002 a
programming error in the banking system allowed people to withdraw any amount
cash by typing in an arbitrary PIN code.

10. London Millennium Bridge - in 2000 the newly built Millennium Bridge wobbled
when pedestrians attempted to walk over it. In the computer simulation the
programmers had used the wrong estimates for pedestrian forces.

Of course, all these systems were planned, but with better planning, these mishaps
might have been prevented. Without planning, probably all large projects would go
wrong.

The most basic notion of well planned programs is producing software which does what
the user wants. This is easy to say, but more than a little difficult to do. If you are taking
this course at the same time as learning a programming language, then we are sure you
know this is so from your own experience.

1.5 Information sources on computing disasters

The World Wide Web and Internet links go out of date rather quickly. You might want to
try accessing the following sites which are current at the beginning of 2004.

1. Ariane 501

� A Bug and a Crash by James Gleick, http://www.around.com/ariane.html

� Ariane-5: Learning from Flight 501 and Preparing for 502 - European Space
Agency (ESA), http://esapub.esrin.esa.it/bulletin/bullet89/dalma89.htm

2. Y2K Problem - The Millennium Bug

� Looking at the Y2K Bug - CNN, http://www.cnn.com/TECH/specials/y2k/

3. NASA Mars Lander

� NASA: Human error caused loss of Mars orbiter - CNN (including video of
news reports), http://www.cnn.com/TECH/space/9911/10/orbiter.03/

� Metric mishap caused loss of NASA orbiter - CNN,
http://www.cnn.com/TECH/space/9909/30/mars.metric.02/

c� HERIOT-WATT UNIVERSITY 2005

http://www.around.com/ariane.html
http://esapub.esrin.esa.it/bulletin/bullet89/dalma89.htm
http://www.cnn.com/TECH/specials/y2k/
http://www.cnn.com/TECH/space/9911/10/orbiter.03/
http://www.cnn.com/TECH/space/9909/30/mars.metric.02/

1.6. WELL PLANNED PROGRAMS 7

4. Passport fiasco

� http://news.bbc.co.uk/1/hi/uk�politics/486821.stm

5. Asylum issue

� http://news.bbc.co.uk/1/hi/uk�politics/1171147.stm

6. Millennium bridge

� http://www.arup.com/MilleniumBridge

Some other general web sites on disasters are:

Risks Digest: http://catless.ncl.ac.uk/risks

No bugs in Win 95 - Interview with Bill Gates: http://www.cantrip.org/nobugs.html

One of the best books on computing disasters is The Mythical Man-Month by F.P.
Brookes, Addison Wesley, 1995. This describes a huge IBM disaster in the late 1960s
- early 1970s, but is just a relevant for today. It is also a very good read - not filled with
jargon and tiresome self-justification. Well worth getting.

Investigating computing disasters

Several WWW sources of information about computing disasters have been given
above. For others we have not given any site details. Try to find out more about any two
(or more) that might interest you. Write a brief summary of two disasters that you have
found.

1.6 Well planned programs

The most basic notion of well planned programs is to produce software that does what
the user wants.

Other characteristics of well planned programs are:

1. the software should be maintainable: software with a long lifetime is likely to
need changing. This means that software must be written and documented in a
way which makes change simple and straightforward

2. the software should be reliable

3. the software should be efficient. It should not make unreasonable demands
on the hardware on which it will run. But higher efficiency can lead to less
maintainable software as programmers use shortcuts which are effective, but
difficult to understand

4. the software should have an appropriate user interface. ’Appropriate’ means that
you need to consider the background and capabilities of intended system users.

There is often a trade-off between these factors and the cost of producing the software.
This is illustrated in the diagrams in Figure 1.1.

c� HERIOT-WATT UNIVERSITY 2005

http://news.bbc.co.uk/1/hi/uk_politics/486821.stm
http://news.bbc.co.uk/1/hi/uk_politics/1171147.stm
http://www.arup.com/MilleniumBridge
http://catless.ncl.ac.uk/risks
http://www.cantrip.org/nobugs.html

8 TOPIC 1. INTRODUCTION TO SOFTWARE DEVELOPMENT PROCESS

As you can see, costs increase dramatically as developers attempt to provide software
that is 100 percent reliable. Making software more efficient also increases the amount
of money that needs to be invested.

����

���������	

����

����
����	

Figure 1.1: Cost of Software Systems

1.7 Summary

The following summary points are related to the learning objectives in the topic
introduction:

� software development has its roots in software engineering;

� software development is a complex process involving many facets of professional
expertise;

� no matter how simple or complex a program is, the elements of software
development are almost mandatory to ensure well-planned programs;

� well-planned programs take time to evolve;

� no matter how rigorous the software development processes are, errors can still
occur in large, commercial software systems.

1.8 End Of Topic Test

An online assessment is provided to help you review this topic.

c� HERIOT-WATT UNIVERSITY 2005

9

Topic 2

Features of Software Development
Process

Contents

2.1 Introduction . 11

2.2 Preamble . 11

2.3 The need for iteration . 13

2.3.1 Review questions . 14

2.3.2 The Analysis Stage . 15

2.3.3 The Design Stage . 15

2.3.4 Review questions . 16

2.3.5 The Implementation stage . 17

2.3.6 The Testing Stage . 18

2.3.7 The Documentation Stage . 19

2.3.8 The Evaluation Stage . 19

2.3.9 The Maintenance stage . 20

2.3.10 Review questions . 20

2.4 Analysis in closer detail . 20

2.5 Design in closer detail . 21

2.5.1 The human computer interface . 21

2.5.2 Data structure . 22

2.5.3 The Main program . 23

2.6 Implementation in closer detail . 24

2.6.1 Review questions . 25

2.7 Testing in closer detail . 25

2.7.1 Alpha testing . 27

2.7.2 Beta testing . 27

2.7.3 Review questions . 28

2.8 Documentation in closer detail . 28

2.8.1 User guide . 29

2.8.2 Technical guide . 30

2.9 Evaluation in more detail . 30

2.10 Maintenance in closer detail . 31

2.11 Weaknesses of the Waterfall Model . 33

2.12 Summary . 33

10 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

2.13 End of topic test . 34

Prerequisite knowledge

Before studying this topic you should be able to:

� describe the following stages of the software development process, analysis,
design, implementation, testing, documentation, evaluation, maintenance;

� describe and be able to use test data (normal, extreme and exceptional);

� describe the features of a user guide and a technical guide;

� evaluate software in terms of fitness for purpose, user interface and readability.

Learning Objectives

� understand the iterative nature of the software development process

� understand each stage of software development

� identify various models of the software development process

� understand the purpose of the software specification and its status as a legal
contract

� understand and be able to describe corrective, adaptive and perfective
maintenance

� understand the need for documentation at each stage of the software development
process

c� HERIOT-WATT UNIVERSITY 2005

2.1. INTRODUCTION 11

Revision

Q1: The software development process consists of seven stages. Three of the stages
are analysis, testing and maintenance. Which one of the following statements correctly
identifies the missing stages, in order?

a) Design, documentation, evaluation, implementation
b) Design, evaluation, documentation, implementation
c) Design, implementation, documentation, evaluation
d) Design, documentation, implementation, evaluation

Q2: The software development process is an iterative process. This means that
(choose one):

a) Certain stages of the process are re-written to improve quality
b) Certain stages of the process are re-visited to make sure all is well
c) Certain stages of the process are ignored to save time
d) Certain stages of the process are very complex so more time is spent on them

Q3: Which one of the following is an essential item of documentation that should be
produced during the software development process?:

a) Design notation
b) Test data
c) User interface
d) User and Technical Guides

Q4: Which one of the following is NOT an aspect of the user interface of a program?:

a) Program listing
b) Help screens
c) Instruction screens
d) Screen layout

2.1 Introduction

This topic introduces the various mechanism of the software development process.
From the initial client specification to the production of a working program can take
considerable time and effort by the development team. The process involves constant
revision and evaluation at every phase which makes it an iterative process. This ensures
quality and efficiency in the final product. Various models are introduced that aid the
software development process but you will find that the perfect solution does not exist.

2.2 Preamble

An individual may write a program for personal use. If it does not work then it can
be changed. If more features or facilities are required then the individual can make
amendments to their program.

c� HERIOT-WATT UNIVERSITY 2005

12 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

This ad hoc method is not satisfactory in commercial environments where the goal is
the creation of large scale software. A more structured approach is necessary.

�������������������
���������	��������

���	����������
������������

������������������
�����������������

Organisations creating software usually do so for profit. Money, time, and people are
involved. The people involved have different points of view; some are clients, wanting
to buy software; some are developers concerned in creating software. Managers are
concerned with efficiency and profit within their organisation.

In the development of software, the three aspects which the developer must consider
are:

� data

� processes

� human computer interface

In traditional structured design, the primary tasks are to focus on the processes. A
process is the work that a program carries out on data or in response to certain inputs.

The software development process does not always start in the same place. Sometimes
there will only be an outline of the problem. At other times, a specification will be
available.

The specification must be agreed with the clients. Work on the problem and the solution
is often carried out by a group of people, called the development team.

The aim of the team is to produce a new software system that will solve the problem.

Software houses are in business to produce software and sell this to the world at large.
They develop software for sale to a market which they believe exists. They also write
bespoke software to meet specific needs.

c� HERIOT-WATT UNIVERSITY 2005

2.3. THE NEED FOR ITERATION 13

2.3 The need for iteration

The traditional software development process contains a sequence of stages. The
precise names of the stages, and even the number of stages, are not universally agreed.
They differ from book to book and from developer to developer. Much depends on the
aspects of software development that a book wishes to emphasise or that a particular
developer prefers.

Referred to as the waterfall model this was one of the first models designed for software
engineering, which arose as a response to the disorganised ways in which previous
software systems evolved.

In this course we will consider the following stages:

�����������	
�

���	
�

������	�

�
��������	
�

����	�
�������

	�

�������	
�

��	��������

The idea here is that the development of the system flows down or cascades through
the stages like water flowing down a fall. As each stage is completed responsibility and
control is passed down until the final section is completed. We will look at each stage in
turn very shortly.

An important aspect of the software development process is that it is an iterative
process. An iterative process is one that incorporates feedback and involves an element
of repetition.

One of the main drawbacks to this model is the fact that if any unnoticed errors occur
at any stage of the process then the entire model has to be revised to take these errors
into account

The model, as it stands, represents an ideal world rather than reality. Developers do not
know everything the client will need at the start of a project; they make wrong decisions,
possibly based on incomplete information. Even with perfect knowledge and infallible
decisions, the model could not stand as it is because, as time goes by, more information
comes to light which changes how the software is to perform.

c� HERIOT-WATT UNIVERSITY 2005

14 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

The model can be improved significantly if it is made to be iterative.

Ideally, you would start a process with the analysis and work through the stages in turn,
doing everything only once. In practice, this happens rarely. People make mistakes,
faults become apparent that can only be corrected by going back to an earlier stage of
the process.

There is an on-line illustration of the need to use an iterative development model. You
should view this animation now.

2.3.1 Review questions

Q5: In the process of software development the waterfall model emerged because

a) Software engineering dictated that such a method should exist
b) The model is easy to understand
c) The evolution of software systems was disorganised
d) Using It is an error-free process

Q6: Which one of the following statements regarding the order of the stages in the
waterfall model is correct?

a) Design, implementation, testing, documentation
b) Analysis, testing, implementation, design
c) Design, testing, evaluation, implementation
d) Analysis, design, testing, evaluation

Q7: The waterfall model may involve iteration. Which one of the following statements
is true if iteration is used?

a) The model will be more realistic
b) Use of the model will become error-free
c) Use of the model will be simpler to understand
d) The model will be easier to implement

Q8: Software developers cannot get the software correct at the first attempt. This is
because:

a) Software systems can be very complex
b) Unforeseen errors always creep in that take time to solve
c) There could be problems with the client changing his/her mind
d) All of the above

Q9: Regular feedback of information to members of the development team is
important. This is done in order to:

a) Speed up the development process
b) Enable personnel to discuss progress
c) Keep the team happy
d) Lower the costs on a regular basis

Sentence completion - waterfall model

On the Web is a sentence completion task on the waterfall model. You should now
complete this task.

c� HERIOT-WATT UNIVERSITY 2005

2.3. THE NEED FOR ITERATION 15

2.3.2 The Analysis Stage

This stage is extremely crucial to the entire cycle of events. Any problems occurring at
this stage will be propagated through the system and will become increasingly costly to
rectify when discovered.

Analysis is an attempt to understand a given problem, clearly and exactly, and to
generate a solution. The outcome will be a specification that is used as the basis for all
subsequent work.

Sometimes, this stage begins with a vague idea or rough outline of the problem and ends
with a precise problem specification. On other, rather more formal, occasions, it will
start with a full requirements specification that serves as a legal contract between
the client organisation and the development team and end with a system specification.
This will include hardware and software specifications, and notes on project issues
such as objectives, constraints, costs and schedule. It may also include a full
functional specification, which will describe exactly how the system is meant to
behave. The functional specification is what the development team will follow in creating
the software system.

Questions to be asked at this stage would include:

� What are the new system requirements?

� What are the costs involved?

� How long will it take to implement?

Details are gathered by a variety of methods such as interviews and questionnaires.

2.3.3 The Design Stage

Once the precise problem specification has been agreed by both client and development
team then the design of the solution begins. The design process is methodical, using
techniques such as structure charts and pseudo-code. The problem is approached
by breaking it down into a collection of relatively small and simple tasks. This approach
is known as top-down design with stepwise refinement.

These techniques will be discussed more fully later.

There are certain characteristics which all good software should possess:

� robustness

� reliability

� portability

The development team will attempt to make the design of the program both robust and
reliable.

� A reliable program is one that does not stop because of faults in its design

� A robust program is one that can cope with errors when it is running,

c� HERIOT-WATT UNIVERSITY 2005

16 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

To put it another way, an unreliable program is one that hangs or crashes for no apparent
reason whereas a non-robust program is one that cannot cope with events that the world
throws at it.

One of the matters for decision at this point is that of the language of implementation.
and the Software Development Environment, eg should the program be written in C++
under Windows or in Java under Unix? One of the factors which may affect this decision
is the portability of the resulting code i.e. can the software be moved to a different
hardware platform and still work effectively.

Identifying the characteristics of good software design

On the Web is a interactivity. You should now complete this task.

2.3.4 Review questions

Q10: Which one of the following processes describes breaking a complex system down
into more manageable components?

a) top-down design
b) using pseudo-code
c) refined design
d) prototyping

Q11: In the software development process which of the following is a legal contract?

a) functional specification
b) problem specification
c) requirements specification
d) systems specification

Q12: Which of the following are identified during the analysis stage of software
development?

a) the main costs of the project
b) time taken to complete the project
c) hardware required to run the system
d) All of the above

Q13: The completed software system should be able to cope with many errors while
running. This means that the software is (choose one):

a) Portable
b) Robust
c) Reliable
d) Stable

Q14: Which of the following is included in the functional specification?

a) a description of what the software must do
b) the hardware used to run the software
c) the nature of the problem to be solved
d) an outline of the problem solution

c� HERIOT-WATT UNIVERSITY 2005

2.3. THE NEED FOR ITERATION 17

2.3.5 The Implementation stage

At this stage, the programming team will make use of test data.

This data is designed to check that the program works properly, and that it is reliable
and robust. Testing is often confused with the debugging of a program, but these are
not the same, though they are very closely related.

� testing discovers any faults in a computer program

� debugging is the finding and correcting of these faults.

Maintainable software should include internal documentation. This is commentary
within the program to explain the various stages and to record any changes that might be
implemented in the coding during debugging. One aspect of this is the use of meaningful
variable names.

Standard Algorithms

Most projects will use certain standard algorithms. Programmers need to be familiar
with these common algorithms. Ones that you will become familiar with later include:

� linear searching

� counting occurrences

� finding maxima and minima

Module Libraries

It is often possible to use, with or without alteration, modules that have been previously
written and have been retained in a module library . A module library will include code
for standard algorithms. Most development environments come with a large library of
modules. Programmers can use these in the code they are developing. These libraries
will include mathematical functions, modules for converting text to numbers, etc.

c� HERIOT-WATT UNIVERSITY 2005

18 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

�
������

	�
��������

�����
 ����
����
��!
""���

�����
�� !�#
��

�����
 ���	�	����"������$
��

�����
�� ���%�&�����!$
��

�����
�� �������"������$
�����������'���"
�����������'��� $
	��������������'���""� (!�#
�������������
�) �"�*+���
�
��,*$
-

�
�����.

	�
��������

�����
 ����
����
��!
""���

�����
�� !�#
��

�����
 ���	�	����"������$
��

�����
�� ���%�&�����!$
��

�����
�� �������"������$
�����������'���"
�����������'��� $
	��������������'���""� (!�#
�������������
�) �"�*+���
�
��,*$
-

�
������

	�
��������

�����
 ����
����
��!
""���

�����
�� !�#
��

�����
 ���	�	����"������$
��

�����
�� ���%�&�����!$
��

�����
�� �������"������$
�����������'���"
�����������'��� $
	��������������'���""� (!�#
�������������
�) �"�*+���
�
��,*$
-

Each module in a module library is:

� pre-tested

� well documented

so that it can be adapted and easily used.

2.3.6 The Testing Stage

Testing has several purposes. It should check that:

� the software meets the specification i.e. is correct

� it is robust

� it is reliable.

Testing follows a test plan or strategy, involving carefully selected test data, with a view
to ensuring that a reliable product has been constructed. Important aspects would be:

� what part of the program is being tested?

� what is the expected output using suitable test data?

Testing can never prove that a program is correct. Even with extensive or
exhaustive testing, it is almost certain that undetected errors exist. Testing can only
demonstrate the presence of errors, it cannot demonstrate their absence.

Commercial software is not exhaustively tested at the testing stage. Software can be
complicated and the available time is limited. There must be a balance between creating
a product for the market and exhaustive testing. If errors become apparent after release,
the company will fix them and release with an updated version.

c� HERIOT-WATT UNIVERSITY 2005

2.3. THE NEED FOR ITERATION 19

2.3.7 The Documentation Stage

Users will need to be able to read and learn about the new system. The documentation
should include a user guide for people who will be using the system, and a
technical guide for those who will be maintaining it.

Other documentation is largely for the benefit of the development team and will
include all the documents produced in the course of the development process. This
documentation is essential for certain kinds of maintenance or for future revisions of the
software. Final documentation will include a structured listing of the program

Sentence completion - Documentation

On the Web is a interactivity. You should now complete this task.

2.3.8 The Evaluation Stage

Evaluation is the formal monitoring of a system to ensure that it is performing its purpose
accurately, efficiently, cost effectively and in a timely manner. The performance of
the system must be matched against a given set of criteria such as the initial project
specification.

Evaluations of various kinds are an important aspect of the software development
industry. Evaluations are used to determine if systems are usable, cost effective,
conforming to performance criteria, etc. Evaluation is based on observation, interviews,
and questionnaires. Additionally techniques such as automatic data logging are used.
Many organisations bring in consultants who design and carry out evaluations as the
skills required to carry out effective evaluations are highly specialised.

There is no limit to the number or type of criteria that are used in an evaluation. A very
important aspect of evaluations is defining the criteria. Listed below are a number of
evaluation criteria used in industry:

� the time it takes to install a piece of equipment

� the number of errors an operator makes while doing a specific task

� the time it takes an operator to complete a task

� the number of times a computer crashes or hangs

� the number of phone calls made to a help-line

� the number of times a user consults a manual.

The key criterion in evaluating a software product has to be whether it is fit for purpose
i.e. does it meet the original specification and allow the client to carry out their tasks?
Main questions that may be asked are:

� how closely does the solution match the specification?

� is the solution what the clients were looking for?

c� HERIOT-WATT UNIVERSITY 2005

20 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

Sentence completion - Evaluation

On the Web is a interactivity. You should now complete this task.

2.3.9 The Maintenance stage

This, as a rule, is the most time consuming stage. Software does not wear out but
it usually needs subsequent modification. Some bugs or design shortcomings only
become apparent over time. In addition changes might have to be made to adapt the
system to new demands or legislation (data protection guidelines for example).

It can be tempting to add patches as they are required. However, changes should be
made in an organised manner, having regard to the system as a whole and following
good practice in software development.

Proper maintenance depends on accurate error reporting from users.

2.3.10 Review questions

Q15: Software testing and debugging are different because (choose one)?

a) Debugging finds faults and testing removes them
b) Debugging takes longer to implement than testing
c) Testing finds faults and debugging removes them
d) Testing takes longer to implement than debugging

Q16: What is the purpose of test data?

a) It makes the program run faster
b) It makes the program more efficient
c) It makes the program run more reliably
d) It makes the programs run error-free

Q17: One of the main criteria of software evaluation is fitness for purpose. A program
is fit for purpose if:

a) the final program runs error-free
b) the final program meets the original specification
c) the final program is cheaper than originally planned
d) the final program runs more efficiently

2.4 Analysis in closer detail

Analysis, sometimes called systems analysis, is the job of a specialist person - the
systems analyst.

The work that takes place in this stage of the development process varies from case to
case. Where only a rough outline of a problem exists, the analyst will have to perform a
full systems analysis.

c� HERIOT-WATT UNIVERSITY 2005

2.5. DESIGN IN CLOSER DETAIL 21

Full systems analysis has three phases:

1. collection of information

2. analysis of information collected

3. production of a problem specification or user requirements specification.

2.5 Design in closer detail

The product of the analysis stage is the completed specification. During the design
stage, the specification of the problem is used as the basis for a planned solution. The
work on the design is carried out by a designer: this might be same person as did the
analysis or it may be a member of the programming team. Most analysts can program
and many programmers can carry out analysis. People who can do both are described
as analyst/programmers.

The three major elements of the design are the:

� interface

� data structure

� main program.

2.5.1 The human computer interface

The human computer interface is all that a user sees of a program.

A program’s viability often relies on the quality of the HCI. A good interface makes things
easier for the user. A bad interface can introduce mistakes and cause irritation.

���
����	
� ����

/���
��0�12��3��	���
�����.	��4����0�(35321

����6�
	�����	
��0�7�8259:
�
�������;�����0�<))�4=
/4
���8
��0�<<1�><1<
8����
���

�0�;����

 0))��

Modern HCIs are often designed as Graphical User Interfaces (GUIs) which provide a
WIMP environment. WIMP stands for Windows Icons Menus Pointers (although some
textbooks refer to Windows, Icons, Mouse, Pulldown menus). A GUI provides a set of
Windows, which contain Icons and Menus. The user controls the program by means of
a Pointer which reflects movement of a mouse, trackerball or other input device.

c� HERIOT-WATT UNIVERSITY 2005

22 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

The HCI must allow easy navigation. Users should be able to move from one screen to
another in a straightforward manner and to leave screens when they wish. Some sites
on the Internet, for example, include a site-map to show the user how different forms are
linked.

HCI must be consistent, so that similar actions in different parts of the interface have
similar responses throughout the program. Prompts given to the user should be
consistent. Different screens should look as though they belong to the same software
package.

The HCI should provide on-line help, offering intelligible prompts and send messages
and warnings to the user about the consequences of choices made, eg send a warning
if a user chooses to delete data.

HCI design is based on an appreciation of what the user wishes to see. The designer
thinks in terms of the windows (often called forms) that are presented to the user.

Identifying characteristics of a good user interface

On the Web is a interactivity. You should now complete this task.

2.5.2 Data structure

A program must perform operations on the data supplied to it. The data should be
structured data. The choice of data structure will affect the entire program.

A sorted array, for example, can be searched quickly but it is more difficult to maintain or
to add data items. The array must be sorted in the first place. Any additions or deletions
must leave the array in order and tightly packed. An unsorted array allows additional
items to be easily added but searching can be slow.

When the amount of data is likely to be very large, the designer must consider the

c� HERIOT-WATT UNIVERSITY 2005

2.5. DESIGN IN CLOSER DETAIL 23

physical capacity of the hardware. For example, a million records, of a thousand bytes
each, will require about a gigabyte. If the clients want these records ordered in different
ways in different parts of the program, even a modern PC may have insufficient memory.

Many large systems involve a database. In many cases, the data are held in different
tables which are linked together. These links are called relations and such a database is
known as a relational database . The fields that are to be in the tables and the relations
between tables need to be defined at the design stage.

Object oriented design attempts to treat data and objects together. An object brings
together items of data and the operations that can be carried out on it. For example
a data item might be a customer’s record, and the operations might include creating,
displaying, editing, and deleting.

2.5.3 The Main program

This is the end product of the software development process and represents the efforts
of the development team being realised. It may take many months or even years to
arrive at a working solution to the initial problem so it must be designed with due care
and attention.

The system specification and functional specification will form the basis for designing
the program. The design team must consider:

� hardware specification

� choice of high level language

� how the software will finally behave

� choice of operating system

� portability of the system

Hardware aspects will include processor speed (does the program require multiple
processors for optimum performance as in networked database applications or maybe
maximum memory for caching information on a regular basis). How much external
storage is required for, say, regular backing up procedures and on what medium? This
is an important issue especially on networked systems where users’ files are archived
on a daily basis.

A high level language will be chosen that is best suited to the problem but also one
which the programming team is conversant with and proficient in its use. Modularity will
be an important issue where the team can share the workload by compiling modules
independently thereby reducing the overall development time. Module libraries can be a
source of standard algorithms to be used in software projects of many types.

How the system behaves will be determined by the reliability and robustness of the
program. Actual and expected outputs should be in agreement as far as possible and
this can only be ascertained by rigorous testing at the implementation stage.

Choice of operating system will relate to the functionality and feel of the HCI. Windows
might offer much in the way of colourful screens, interactive help and dialogue boxes etc.
It must also affect how the program runs and behaves: is the OS software stable enough

c� HERIOT-WATT UNIVERSITY 2005

24 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

for the developed program to behave normally without crashing or does the OS offer a
true multi-tasking environment, as in UNIX with the added benefits of in-built security.
Nowadays Linux is being seen as a viable operating system which is both stable and not
difficult to use.

If the developed software can be moved to different machine architecture and still run
to specification then it will be deemed to be portable. In some cases this might not be
required but it is a characteristic that good software should possess.

2.6 Implementation in closer detail

If the design has been thorough the implementation should be straightforward. It should
be a matter of translating the pseudo-code into code, line by line.

The design is implemented when it has been converted into code which can be used by
the computer system.

The code is written in a high-level language, such as Pascal, C++ or Java, and
converted into code which the computer understands.

A high-level language is one that people find relatively easy to understand. The code
written at this stage is called source code.

The machine can understand machine code, a translation of the source code into
binary instructions. This code, because it can be executed by a computer, is also known
as executable code.

The translation, from source code into machine code, is carried out by a program called
a compiler. The resultant machine code is portable to machines of the same type
running under the same kind of operating system.

Compiling and debugging large programs can take a lot of time.

Another form of translation that can reduce development time is an interpreter. When
an error is encountered, the interpreter immediately feeds back information on the type
of error and stops interpreting the code. This allows the programmer to see instantly the
nature of the error and where it has occurred. He or she can then make the necessary
changes to the source code and have it re-interpreted.

As the interpreter is also executing each line of code one at a time the programmer is
able to see the results of the program immediately which can also help with debugging.

Sometimes problems that arise at the implementation stage will call for a return to
an earlier stage of the development process. For example, it might turn out that an
algorithm runs too slowly to be useful and that the designer will have to develop a faster
algorithm. Or it might be that the slowness of operation is due not to a poor algorithm but
to the hardware capability. In such a case, the development team might have to return
to the analysis stage and reconsider the hardware specification.

At the end of the implementation stage a structured listing is produced, complete with
internal documentation. This will be checked against the design and against the original
specification, to ensure that the project is remains on target.

c� HERIOT-WATT UNIVERSITY 2005

2.7. TESTING IN CLOSER DETAIL 25

2.6.1 Review questions

Q18: Which of the following is a quality of a good human computer interface?

a) It should be Windows-based
b) It can make a program execute faster
c) It can make running a program a less irritable experience
d) It should have lots of colour

Q19: Which one of the following elements is not part of software design?

a) The interface
b) The requirements
c) The data structures
d) The main program

Q20: Which one of the following is not a high level language?

a) Visual Basic
b) Pascal
c) Assembler
d) C++

Q21: Which of these is not the result of compilation??

a) Executable code
b) Object code
c) Machine code
d) Source code

2.7 Testing in closer detail

Testing has several purposes. It should check that:

� the software meets the specification

� it is robust

� it is reliable.

Commercial software is not exhaustively tested at the testing stage. Software can be
complicated and the available time is limited. There must be a balance between creating
a product for the market and exhaustive testing. If errors become apparent after release,
the company will fix them and release an updated version.

Testing is carried out at several stages during and after implementation:

c� HERIOT-WATT UNIVERSITY 2005

26 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

����
�������

������
�������

��
��	����
�������

�����������
�������

����������
�������

Test data preparation

Testing can never show that a program is correct. Even with extensive testing, it is
almost certain that undetected errors exist. Testing can only demonstrate the presence
of errors, it cannot demonstrate their absence.

One thing you have to watch for is that errors may not cause immediate failure or obvious
corruption of your program. Instead they may result in an incorrect output at some later
stage.

To detect these errors the running of the program must be traced as the faulty output is
only a symptom of the problem rather than the problem itself. The easiest way to trace
the program execution is to add "print" statements to the program at key points or use a
trace facility.

Finally, and most importantly, tests should be devised against the specification, so that
you can see whether or not the program does what it is supposed to do.

In the full software development process, now is the point at which test data should be
prepared. You do it before the coding. That is, before you have invested time and effort
in writing the code.

All too often there is a temptation especially at classroom level to start coding a program
as soon as possible without having produced adequate test data.

But experience shows that this is a mistake. Once you have written the code you will
tend to go easy on it, and let the program’s behaviour shape what you expect of it. You
are going to be too kind to it. What you see becomes what you expect and what any
’reasonable person’

MURPHY’s LAW 1 MURPHY’s LAW 2
The quicker program coding is started the

longer the project will take
Murphy’s Law 1 is correct!

Testing follows a test plan or strategy. With most software projects, the usual strategy is
to test the software twice. The methods are called:

� alpha testing where the software is tested within the organisation

� beta testing where the software is tested by personnel outside the organisation or
by certain members of the public. This is sometimes called acceptance testing.

c� HERIOT-WATT UNIVERSITY 2005

2.7. TESTING IN CLOSER DETAIL 27

2.7.1 Alpha testing

Test data is based on the specification. Data will be designed to test three aspects of
the program:

� normal operation: data that the program has essentially been built to process; all
outputs should be satisfactory.

� extreme / boundary testing: data to test that the program functions properly with
data at the extremes of its operation; for example, if a number entered is meant
to be limited, the program’s performance is tested just within the limit, on the limit,
and just beyond the limit; as another example, if a table is supposed to have a
maximum number of elements, the program is tested to see if it can cope with
exactly the maximum and if it can cope when an attempt is made to exceed the
maximum.

� exceptions testing: data that lie beyond the extremes of the program’s normal
operation; these should include a selection of what might be called silly data, to
test the program’s robustness, that a user might enter in a moment of confusion or
mischief.

Matching definitions - Testing

On the Web is a interactivity. You should now complete this task.

Faults that become evident during testing are known as bugs. If bugs are identified, the
program is sent back, with the test logs, to the programming team for debugging. This
process is likely to be iterative: testing, finds bugs, they get fixed, the program’s tested
again, more bugs are found, and so on.

It may be that bugs reveal flaws that were introduced at an earlier stage of the process,
at the design or even at the analysis stage. If this is the case, the documentation for
each stage of the development process will need to be corrected.

A standard technique to identify potential errors is to conduct a dry run. This involves
taking test data and a listing of the relevant part of the code, and calculating exactly
what would happen to the data if it were to pass through that code. It is a pencil and
paper exercise.

2.7.2 Beta testing

Otherwise known as acceptance testing it takes place after alpha testing. The idea is to
subject a completed program to testing under actual working conditions.

If a program has been developed for use by particular clients, it is installed on their site.
The clients use the program for a given period and then report back to the development
team. The process might be iterative, with the development team making adjustments
to the software. When the clients regard the program’s operation as acceptable, the
testing stage is complete.

If a program is being developed by a software house for sale to a market rather than an
individual client, the developers will provide an alpha-tested version to a select group
of expert users such as computer journalists and authors, and also makers of related
computing products such as printers.

c� HERIOT-WATT UNIVERSITY 2005

28 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

This is of benefit to both parties: the software house gets its product tested by people
who are good at noticing faults, and the writers get to know about products in advance;
which further benefits both parties when the final production software is released, the
software house getting publicity and the writers receive credit for being up to date.

People involved in beta testing will send back error reports to the development team.
An error report is about a malfunction of the program and should contain details of the
circumstances which lead to in the malfunction. These error reports are used by the
development team to find and correct the problem.

2.7.3 Review questions

Q22: Which one of the following statements describe alpha testing?

a) Testing is done by the users
b) Testing is done within the organisation
c) Testing is done by specialist companies
d) Testing is done by the client

Q23: Which of the following describes beta testing?

a) The program is tested by the clients
b) The testing is more rigorous than alpha
c) The testing is for market research
d) The program is tested by specialist companies

Q24: During alpha testing, the program is usually subjected to exceptions testing.
This means:

a) The input of silly data
b) The input of large numbers
c) The input of small numbers
d) All of these

2.8 Documentation in closer detail

Documentation is intended to describe a system and make it more easily understood.
Documentation will consist of:

1. user guide

2. technical guide

Some information may appear in both guides; eg system specification.

Internal documentation such as remarks or comments in the code are for the benefit of
the development team. It will help if changes have to be made to the software in the
future.

Other documentation for the development team includes all the documents produced
in the software development process: requirements specification, program design

c� HERIOT-WATT UNIVERSITY 2005

2.8. DOCUMENTATION IN CLOSER DETAIL 29

documents (for the HCI and for the structure and logic of the underlying code), a
structured listing of the code, and a test history.

2.8.1 User guide

The user guide contains information about how to install, start and use software. It
should also contain a list of commands and how to use them. Where there is a significant
HCI, the guide will show each form, menu, and icon, and associated instructions about
their use.

User guides may be supplied as paper manuals, often with separate manuals for
installation, getting started and the user guide.

7;�
6��

�87
�?

@��
���4

���

��

�
��
/��

��

���
���	�

A�

���4

�

8��
'
�

A�	�

��

���
�	�A

��
�4�

���
�A�

�

8��
'
�

A�	�

��

'	�
4��4

�

�	
4
���

��
���

���

�B

����
��	�

�/
�
�

���	
���

�����������

Increasingly software vendors supply the manuals on disc or CD where they may be
available in (pdf) or hypertext markup language (HTML).

Paper manuals are costly to reproduce; manufacturers frequently include electronic files
which provide up-to-date amendments. This lets the user read up to date information
which could not be included in the original paper manual.

It is common for sample files to be included which complement the tutorial and provide
the user with demonstration files.

The program should contain a help facility. It is common for on-line help to be presented
in three tagged pages: Contents, Index, and Search. The contents present the help
chapter by chapter; the index refers to certain key words in the chapters; and search
offers the facility to locate key terms within the guide.

c� HERIOT-WATT UNIVERSITY 2005

30 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

2.8.2 Technical guide

The technical guide will contain information about the hardware and software
requirements of the program. The hardware specification will include details of the
processor type and speed, RAM required, RAM desired, monitor resolution, graphics
and sound card specifications etc. It will also contain instructions about configuring the
program.

�@�7��8����@8

Software designed to operate, or run on networks can be very complicated and require
a good deal of expertise. Technical guides can be very large and cumbersome and
difficult to navigate.

2.9 Evaluation in more detail

The evaluation is important for the user and the software author. There are two reasons
for conducting an evaluation:

� does the software meet the users requirements?

� how can the software house improve the product?

c� HERIOT-WATT UNIVERSITY 2005

2.10. MAINTENANCE IN CLOSER DETAIL 31

The performance of the system can be assessed in various ways:

� how closely does it fit the system design?

� how well does it answer the problem specification?

Questions may also be asked about matters such as:

� was the project within budget?

� was the project completed to schedule?

The development team will wish to review the project, perhaps to learn from any
mistakes to ensure they incorporate good points in future programmes.

Software houses aspire to produce new and better versions of their software. They will
study press reviews and note any contents and criticisms. New or forthcoming changes
(in technology, in operating environment, and so on) are also taken into account. When
the evaluation is complete, work begins on the next version of the system.

2.10 Maintenance in closer detail

Once the software is operating, the users will need support. In the case of a bespoke
system, the development team (or the organisation it works for) will offer training in the
use of the new system.

Creators of software systems often establish help desks, so users can obtain advice
about the software.

Software does not wear out, in any physical sense, but the presence of errors or
omissions will give rise to the need for maintenance.

c� HERIOT-WATT UNIVERSITY 2005

32 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

��������	�
���
��	
�
����	������
�����

Software maintenance always involves a change in the software with the accompanying
probability that additional errors may be introduced. It is essential to ensure that
adequate quality control is in place.

There are three types of software maintenance:

� corrective

� adaptive

� perfective

Corrective maintenance is concerned with errors that escaped detection during testing
but which occur during actual use of the program. Users are encouraged to complete an
error report, stating the inputs that seemed to provoke the problem and any messages
that the program might have displayed. These error reports are invaluable to the
development team, who will attempt to replicate the errors and provide a improved
solution.

Adaptive maintenance is necessary when the program’s environment changes. It
allows the authors to provide a program which responds to changes in the operating
environment. For example, a change of operating system could require changes in the
program, or a new printer might call for a new printer driver to be added to the program.
A change of computer system will require the program to be ported to the new system.

Perfective maintenance occurs in response to requests from the user to enhance the
performance of the program. This may be due to changes in the requirements or new
legislation. Such maintenance can involve revision of the entire system and can be
expensive.

c� HERIOT-WATT UNIVERSITY 2005

2.11. WEAKNESSES OF THE WATERFALL MODEL 33

Matching definitions - Maintenance

On the Web is a interactivity. You should now complete this task.

2.11 Weaknesses of the Waterfall Model

Problems are usually encountered when you use the waterfall model:

1. Real projects rarely follow a linear, sequential flow. Apart from any software
problems, people change their minds, and often there may be changes in
legislation which mean that the program must be altered in order to comply with
the new regulations. No matter what the reason, iteration always occurs and this
creates problems because much of your work has to be re-examined and revised;

2. It is difficult for the customer to state all requirements explicitly at the start
of developments. The waterfall model depends on this and has difficulty
incorporating customer uncertainty;

3. Clients are frequently excluded from the development. The working version of the
program will not be available for the customer to see until late in the development
cycle;

4. Developers work in isolation from the clients, often for months, only for the clients
to be disappointed with the results. Many developers value feedback from clients
as the project progresses;

5. Errors arising from incorrect requirements will not be obvious until late in the
cycle, by which time they will be difficult and expensive to fix. There is nothing
so depressing as delivering months, sometimes years, of work to the customer
only to be greeted with the response, "That’s not what I wanted at all."

6. The waterfall model does not address project management or software
maintenance.

There are alternative models that have been developed for two reasons:

� perceived shortcomings in the traditional approach;

� advances in hardware and software.

2.12 Summary

The following summary points are related to the learning objectives in the topic
introduction:

� understand the mechanism of the software development process;

� the process is iterative and involves a continual revision and evaluation at each
phase of the process;

c� HERIOT-WATT UNIVERSITY 2005

34 TOPIC 2. FEATURES OF SOFTWARE DEVELOPMENT PROCESS

� it is a time-consuming procedure from initial specification to a working program;

� various models exist to aid the software development process but none are perfect.

2.13 End of topic test

An online assessment is provided to help you review this topic.

c� HERIOT-WATT UNIVERSITY 2005

35

Topic 3

Design notation, data flow and
evaluation

Contents

3.1 Introduction . 37

3.2 Tools and Techniques . 38

3.3 Design methodologies and notations . 38

3.3.1 Top-down design with stepwise refinement 38

3.3.2 Structure charts . 40

3.3.3 Pseudo-code . 42

3.3.4 Review questions . 43

3.4 Test Data . 44

3.4.1 Test data preparation . 46

3.4.2 Review questions . 47

3.5 Structured Listing . 48

3.6 Error Reporting . 48

3.6.1 Syntax Errors . 49

3.6.2 Execution / Run-time Errors . 49

3.6.3 Logical Errors . 49

3.7 Module libraries . 50

3.8 Software characteristics . 50

3.8.1 Robustness . 50

3.8.2 Reliability . 51

3.8.3 Portability . 51

3.8.4 Review questions . 51

3.9 Summary . 51

3.10 End of topic test . 52

Prerequisite knowledge

Before studying this topic you should be able to:

� describe and use pseudocode;

� describe and use a graphical design notation (structure diagram or other suitable
method);

36 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

Learning Objectives

� understand the nature of graphical design notations

� be able to use a graphical design construct

� understand the nature of pseudo-code

� be able to use pseudo-code

� understand the nature of top down design and stepwise refinement

� understand the need for systematic and comprehensive testing

� understand the terms robustness, reliability, portability, efficiency and
maintainability in the context of software evaluation

c� HERIOT-WATT UNIVERSITY 2005

3.1. INTRODUCTION 37

Revision

Q1: At the design stage of the software development process pseudocode may be
used to represent a solution to a problem. Which of the following best describes
pseudocode?

a) It uses ordinary English words
b) It is high level language dependant
c) It is very useful in complex program designs
d) It mostly uses high level language key words

Q2: A structure diagram is a valuable aid to the programming team. This is because:

a) They are easy to use and can be understood by the user
b) They allow for faster program execution
c) They are required during evaluation
d) They represent thedesign in a visual way

Q3: Pseudocode can be considered to be an intermediate stage between:

a) High level language code and machine code
b) English and high level language code
c) English and machine code
d) Source code and object code

Q4: At what stage of the software development process could a running program be
modified or updated to a newer version?

a) Testing
b) Evaluation
c) Maintenance
d) Implementation

Q5: A computer program is designed to accept input values between 0 and 99 as
whole numbers. If the value 56.8 was entered this would be an example of:

a) valid data
b) extreme data
c) exceptional data
d) boundary data

3.1 Introduction

In this topic you will learn about the various methods that are used to aid the
system developers and programming team to implement solutions according to program
specifications. The first important issue you will come across is that program coding is
only attempted after extensive and rigorous series of analysis and design stages are
completed. Efforts at these initial stages pay dividends at the coding stage reducing
testing, debugging and maintenance of the programs.

c� HERIOT-WATT UNIVERSITY 2005

38 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

3.2 Tools and Techniques

This section describes the tools and techniques used in the software development
process. Good program design will save much cost and time in the later stages of
development such as testing, debugging and maintenance. You will see more of this
later.

The main tools and techniques include:

� Design methodologies

� Test data

� Structured program listing

� Comprehensive error reporting

� Module libraries

3.3 Design methodologies and notations

The design of software is something of an art and normally follows a clear design
methodology. A methodology is an agreed technique used to design software. It
includes both approaches to designing software and the notations used to represent
the design.

Design documentation will often include more than one notation, eg structure charts for
the higher levels, to provide an overall picture, and pseudo-code for the detail. Often the
design notations are used at different stages in the design process and serve to provide
information to different audiences.

3.3.1 Top-down design with stepwise refinement

Stepwise refinement is an approach used in computing and in many other fields as well.
The idea behind it is this:

1. A problem might be difficult to solve as it stands, so you try to break it down into
a set of smaller problems which might be solved more easily. This represents the
first step of the process

2. You then take the smaller problems, one at a time, and break them down into still
smaller problems

3. You keep repeating this process of breaking the problems down until all the
problems facing you are small enough to handle

At this point you are able to create detailed designs, which can be turned into
programming code.

The process is top-down, because you start with an overview of the whole problem and
gradually work down to the fine detail. It is called ’top-down with stepwise refinement’

c� HERIOT-WATT UNIVERSITY 2005

3.3. DESIGN METHODOLOGIES AND NOTATIONS 39

because the designer works through a series of steps, gradually refining the small
detailed aspects of the program.

One other advantage of this systematic approach is that it also automatically gives a
structure to your solution.

���������
�	
���

 �������������
!��
���

 �������������
!��
���

"����	�#��	
!��
���

#��	
!��
���

#��	
!��
���

"����	�#��	
!��
���

#��	
!��
���

"����	�#��	
!��
���

#��	
!��
���

#��	
!��
���

#��	
!��
���

#��	
!��
���

#��	
!��
���

#��	
!��
���

#��	
!��
���

Figure 3.1: Stepwise refinement

Stepwise refinement allows the designer to concentrate on one small part of the problem
at a time. If thinking about the problem as a whole, the designer does not have to bother
with details. In thinking about a portion of the detailed design, the designer does not
have to bear in mind all the rest of the problem. This makes the process manageable.

Once manageable parts have been identified the analyst can assign individual tasks to
different teams of programmers. The complex task is made more straightforward by the
system of ’divide and conquer’.

Programmers often use stubs when using a top down technique. A stub is an outline of
a module, that does little more, at run time, than declare its presence or return a value
of appropriate type. When all the stubs are in place, the program as it stands can be
tested to make sure that all the stubs are properly linked. Then the detailed work can
begin.

It may have occurred to you that if top-down design exists then what about bottom-up
design?

c� HERIOT-WATT UNIVERSITY 2005

40 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

Bottom-up design begins with the lower levels of detail, for example a device driver for
a peripheral that will require to be written around the program codes needed to operate
the device. The emphasis here is to write the individual modules, and knit them all
together to form the final program. With object-oriented programming the bottom-up
approach has been partially revived.

3.3.2 Structure charts

An important approach in practically all methods of analysis is to draw a picture of some
kind. Analysts use pictures to present a synopsis of a system which shows:

� the main elements of the solution

� how they fit together.

It is not enough for the analyst to have a design in mind. It must be represented in a form
that can be used by all members of the team. One method is to use structure charts,
which are sometimes called structure diagrams. A structure chart gives a picture of the
design. A structure chart is an example of a graphical design notation

Structure charts depict programs or parts of programs. Styles vary in detail, but in
essence structure charts consist of boxes, lines, arrows and text. A box represents a
block of code and has a name. Usually, it is a descriptive expression starting with a verb;
it shows the block’s purpose.

Structure charts can be drawn according to various sets of guidelines. These are the
basic graphical elements:

������

�����������

$���������%��������&

A structure chart for a program that simply gets in some data, changes it in some way
and produces output might look like Figure 3.2:

'������

�������������� (�����

$���
$��� $���

$���

Figure 3.2: Software Design Structure

Structure charts are read from top to bottom and left to right at each level. The line
joining two boxes indicates that the lower is called, or brought into action, by the upper.
The lower box represents one of the things the upper box has to do. Along each line,
names and arrows describe the data that flow from one block to another and the direction
in which they flow.

c� HERIOT-WATT UNIVERSITY 2005

3.3. DESIGN METHODOLOGIES AND NOTATIONS 41

Each block in the structure chart represents a section of code to be written. These
sections have the generic name module.

The modules in a structure chart will become modules of code in the finished program.
The designer must give the modules meaningful names (rather than Block 1, Block 2
etc.) which describe what the module does. This makes the design easier to follow.

Structure charts emphasise modular design as they are hierarchical. The project as a
whole is at the top of the hierarchy. A structure chart shows the relationship between
modules and in particular shows which modules contain calls to modules lower down
in the structure. A complete structure chart of a large software system shows the
relationship between all the modules in the system. A structure chart conveys selected
information with clarity, rather than presenting all the information at once.

By convention, structure charts are kept simple, with no more than half a dozen blocks
to each chart. What matters is that the picture should be clear and easy to bear in mind.
If a block needs further refinement, that is represented in another chart.

Describing a structure chart

Figure 3.3: Sample structure chart

Figure 3.3 shows a structure chart. Make a list of all the modules and all the data flows.
Remember to make a sensible guess at what each block is supposed to do - it’s name
should be a good indication of this!

c� HERIOT-WATT UNIVERSITY 2005

42 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

What sort of program do you think is represented by the whole structure chart?

3.3.3 Pseudo-code

Another method is to describe the design in terms of pseudo-code. Pseudo-code is a
non-graphical design notation. This is mostly used for working out the details of a
design. At this level, pictures don’t really help. Pseudo-code is a way of writing that
lies somewhere between code and natural language (such as English). It represents an
understanding of the solution that can be turned into code but can still be understood by
people. Pseudo-code follows the indenting conventions of the programming language
to be used for the project. This indentation makes the pseudo-code easier to follow and
to understand.

���������
�)*����������)+(��*�����	������������,-../

���
��������������	�������������	
���	

�����������������������

Pseudo-code is a way of writing about a process without having to bother about details
which are simply a matter of coding. So that you could write:

������� ����� �� �	
���

without having to remember exactly how this is done in the chosen programming
language.

Pseudo-code frees us to get on with thinking about the details of program design, without
our having to stop and look things up in books or worry about whether we have got our
syntax exactly right. You use pseudo-code to explain what a process will do in a clear
and concise way. One of the advantages of pseudo-code is that it can be translated into
programming language code fairly easily. By writing out your program in this way, you

c� HERIOT-WATT UNIVERSITY 2005

3.3. DESIGN METHODOLOGIES AND NOTATIONS 43

are opening up the possibility of re-writing it in a large number of different forms, suitable
for different machines.

Many designers use a numbering system for parts of the design. Each block in
the structure chart has its identifying number and each line of pseudo-code is also
numbered. These numbers enable parts of the program to be related, and show their
dependencies. For example, a block number 3.1 in a structure chart might indicate that
this is the first sub-module in the third module in the main part of the program. A line of
pseudo-code 3.1.10 would indicate the tenth line in this module.

Here is an example of a routine that you will meet in your programming exercises:

Counting occurrences

�
 ��� ��	���� �� ����

�
 ���
�� 	��� �� ���	� ������ ���	�

�
 ��� ������� �� ����� �� ����

�
 ��

�
� ��
���� ������ ���	� �� ���
 �� �	����� ���� ��������

�
�
� �� ������ ���	� � �	����� ���
 ����

�
�
� �����
��� ��	���� �� �

�
�
� ��� ������� �� ���� �������� �� ��� ����

�
� ���� 	���� ��� �� ����

�
 �	��	� �	
��� �� ���	����������	�����

Characteristics of pseudo-code

On the Web is a interactivity. You should now complete this task.

3.3.4 Review questions

Q6: Which of the following is a graphical design notation?

a) Structure charts
b) Stubs
c) Pseudo-code
d) Stepwise refinement

Q7: What statement refers to the term top-down design?

a) It is a software testing approach
b) It is breaking complex problems down into smaller units
c) It is the detailed design of software logic
d) It is the use of pseudo-code

Q8: Which of the following is a design methodology?

a) Structure chart
b) Pseudo-code
c) Stepwise refinement
d) Dry running

c� HERIOT-WATT UNIVERSITY 2005

44 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

Q9: For a designer, an advantage of pseudocode is that he/she can?

a) Think more about the solution to the problem
b) Think more about the hardware
c) Think more about how the program will run
d) Think more about the speed of execution of the program

Q10: One advantage of using stepwise refinement at the design stage is that it:

a) Reduces the chance of errors being introduced
b) The designer does not have to bother with too much detail
c) Makes the process more complex to novices
d) The designer can concentrate on a small part of the problem at a time

3.4 Test Data

When you design your program you should include fail safe mechanisms and anticipate
user errors. We know this is obvious, but fewer bugs mean that you have to spend less
time in fixing your code. Designing your input routines so that they do not crash, means
that you do not have to spend time re-writing them afterwards.

Fixing errors can be very expensive because as faults are removed the cost of finding
and removing remaining faults increases exponentially, as shown in Figure 3.4 and in
Figure 3.5. The last few errors in a program are horrendously expensive to remove - or
even to find. You may wonder why this is so, but all the simple and straightforward tests
have found all the simple and straightforward errors. What are left are the more complex,
intermittent ones which require a very large expenditure of time and effort (and hence
money) to fix. Note that the cost scale in Figure 3.5 is logarithmic, not linear. Take a
look and see how fast the relative costs soar the further along the project path you are.
This is because so much earlier work has to be undone and then re-implemented to fix
the errors. This is another good reason for careful analysis and design.

c� HERIOT-WATT UNIVERSITY 2005

3.4. TEST DATA 45

)��
�����
���������������

'���

Figure 3.4: Cost of Residual Error Removal

!����������������������������

������������
�����0������

"����
����	 $����� '��� �����
	
$��������

�����
	
'�������

(��������

.�-

.�1

.�2

-

1

2

-.

1.

2.

-..

Figure 3.5: Cost of errors in software projects

The purpose of test data is to determine that the system behaves as expected and is
correct according to the program specification. Tests may be used for different purposes.
These include:

� module testing, on components

� integration testing, components function as a unit

c� HERIOT-WATT UNIVERSITY 2005

46 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

� system testing, black box

� acceptance testing, ensures system is ready for operational use.

3.4.1 Test data preparation

Testing can never show that a program is correct. Even with extensive testing, it is almost
certain that undetected errors exist. Testing can only demonstrate the presence of
errors, it cannot demonstrate their absence. A program can be regarded as succeeding
if it passes a test; the test can be regarded as succeeding if it makes the program fail.

One thing you have to watch for is that errors may not cause immediate failure or obvious
corruption of your program. Instead they may result in an incorrect output at some later
stage.

To detect these errors the running of the program must be traced as the faulty output is
only a symptom of the problem rather than the problem itself. The easiest way to trace
the program execution is to add "print" statements to the program at key points. When
you write your programs, we are sure you will become very familiar with these!

Finally, and most importantly, tests should be devised against the specification, so that
you can see whether or not the program does what it’s supposed to do.

In the full software development process, now is the point at which test data should be
prepared. You do it before the coding. That is, before you have invested time and effort
in writing the code.

It is often a temptation to leave making up the test data until you have written the
program. But experience shows that this is a mistake. Once you have written the code
you will tend to go easy on it, and let the program’s behaviour shape what you expect of
it. You are going to be too kind to it. What you see becomes what you expect and what
any ’reasonable person’ would expect.

This is a problem with all programmers but perhaps especially so if you are only
beginning programming. You may have only a hazy idea of what you are doing. Getting
the thing to work at all has been agony. The idea that there are faults in it does not bear
thinking about.

And if you actually uncover faults, it means that you will have a lot more work to do and
unpick lines of code that, as much by luck as anything, seem to work at present. Like it
or not, the only way to test your programs and have a good chance of uncovering bugs
is to prepare the test data beforehand.

Preparing test data

A program is to be written which will read a list of examination marks typed in at
the keyboard and find the average examination mark. The program should reject
examination marks which are not within a specified range and provide a suitable error
message to the user.

c� HERIOT-WATT UNIVERSITY 2005

3.4. TEST DATA 47

1. Write down what you think an acceptable range for an examination mark would
be;

2. Write down an algorithm, in pseudo-code notation, to represent a solution to this
problem;

3. Copy the headings in the table below and construct at least 5 test data entries to
demonstrate how you would verify the correctness of the program.

Test Case Reason Expected Result Actual Result Comments

Sentence completion - test data

On the Web is a interactivity. You should now complete this task.

3.4.2 Review questions

Q11: Which one of the following options states the main purpose of test data?

a) To determine that the system meets the specification
b) To prove the absence of errors
c) To show that the programmers have been careless
d) To minimise the number of errors in the program

Q12: Error detection can be time-consuming. Which one of the following could be
added to a program to help detect errors?

a) Suitable commentary throughout the program
b) Output statements at key points in the code
c) Specific error-detecting code
d) Nothing can be added

Q13: Choose the statement that best describes testing for errors:

a) There is a certainty that undetected errors will always exist
b) Testing can never show that a program is correct
c) Testing can demonstrate the absence of errors
d) All of the above

Q14: One example of a fault-avoidance technique in developing software is?

a) Take more time to design better software
b) Hire more programmers so that errors will be easier to detect
c) Design input routines that will not crash when presented with unexpected data
d) Make sure that that the code is specifically written to avoid errors

Q15: The last remaining errors in a program are not easy to remove because

a) They could remain hidden until the program is run under all conditions
b) The compiler is not very efficient
c) De-bugging procedures are not effective enough
d) They will not affect the running of the program since most errors have been found

c� HERIOT-WATT UNIVERSITY 2005

48 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

3.5 Structured Listing

A structured listing is a hard copy of the program source code. It is important that
the source code is laid out in accordance with the conventions of the implementation
language. The code should be properly indented; this helps people follow the structure
of the code. Meaningful names should be used for modules, constants, and variables.
The use of internal commentary will help to explain the logic of the code to others
and also serve as a documentation aid for the programmer. A structured listing can be
produced at any time during implementation. It can serve as a tool for checking program
logic and also form part of the final software documentation.

Figure 3.6 shows a structured listing of a program coded in the language Visual Basic.

Figure 3.6:

3.6 Error Reporting

Errors can occur at any of the stages in the development process.

This section will describe the following 3 categories of error:

� sytax errors

� run-time errors

� logical errors

c� HERIOT-WATT UNIVERSITY 2005

3.6. ERROR REPORTING 49

3.6.1 Syntax Errors

These are errors which result from incorrect use of the programming language structure;
ie incorrect use of the language grammar. They are detected during compilation and
examples include:

� use of programming language keywords as variable identifiers

� blocks that have a missing "end" marker - e.g in Visual Basic a missing ��� �

statement

� missing brackets/semi-colons.

These types of error can be very irritating, as they prevent the generation of object code.
The program cannot run. Those new to programming often take a long time to become
familiar with the syntax of a new language, to the extent that they can write code as
fluently as is it were the English language.

3.6.2 Execution / Run-time Errors

These are errors detected during the execution of the program; eg division by zero. They
are also known as run-time errors. Even given that a program is translated into machine
code and runs on the computer, there is no guarantee that it will not generate errors.
For example, a common mistake made by programmers is to divide by zero. In most
cases this will produce a run-time error and cause the program to halt unexpectedly.

Another example includes attempting to read character data directly as numeric.

’Array Bounds Exceeded’ is a common mistake in languages which support array data
structures. Here, the programmer is attempting to access a position within the array
which exceeds its predefined bounds.

3.6.3 Logical Errors

These are errors in the design of the program; eg calling the wrong procedure or routine.

Even given that the program translates to machine code and does not halt unexpectedly
due to run-time errors, there is no guarantee that it will not fail. It may contain logical
errors. These are errors in the logic of the code itself. For example, writing code to add
two numbers instead of multiplying them, or forgetting to write code to do something
when a condition that is being tested fails.

Other examples include:

� making a call to the wrong module

� passing incorrect data into a module

� passing the wrong data out of a module.

c� HERIOT-WATT UNIVERSITY 2005

50 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

3.7 Module libraries

The use of previously written modules reduces the time spent creating the final software
and minimises the cost. Designers will incorporate, if possible, modules from the module
library in the design.

For many software companies and programming departments, one project will be similar
to another. Projects will have component parts which are similar; for example many
programs might require a sort routine to act on the contents of a database.

As time goes by, a collection of modules is built up. This collection is known as a
module library.

Program libraries or software libraries are made available for common use. It may
contain compilers, utility programs or code fragments to perform specific operations.

Modules in the library can often be used, over and over, in new projects. This saves
time spent designing and coding. If a module can be used without alteration, there is
the added advantage that it has been thoroughly tested and is reliable. Use of unaltered
modules reduces the time spent on the detection and correction of errors in the project
as a whole.

Sometimes adjustments might be needed to a library module. After the necessary work,
the module will require to undergo error and other testing.

Characteristics of module libraries

On the Web is a interactivity. You should now complete this task.

3.8 Software characteristics

This section introduces the terms robustness, reliability and portability.

A program is robust if it can cope with problems that come from outside and are not of
its own making e.g. corrupt input data. Reliability is an internal matter. A program is
reliable if it runs well, and is never brought to a halt by a design flaw.

When the program is complicated the distinction between the two terms is not always
clear. When a machine hangs it is not always obvious whether this is due to a failure in
robustness or reliability.

3.8.1 Robustness

The designer should try to ensure that the design is robust: the resulting software
should be able to cope with mistakes that users might make or unexpected conditions
that might occur. These should not lead to wrong results or cause the program to hang.
As examples of an unexpected condition, we could take something going wrong with
a printer (it jams, or it runs out of paper) or a disc drive not being available for writing,
because it simply isn’t there (the user’s forgotten to put in the floppy disc), or the user
entering a number when asked for a letter.

c� HERIOT-WATT UNIVERSITY 2005

3.9. SUMMARY 51

3.8.2 Reliability

A reliable program always produces the expected result when given the expected input.
It is designed correctly to do the task specified.

3.8.3 Portability

A portable program can run on a variety on machine architectures under different
operating systems with little or no modification. A portable program is one which is
machine independent.

A large, and successful, commercial system will generally outlast the hardware it was
developed on. When the hardware is changed, the system will need to be transferred,
or ported, to the new hardware.

Characteristic of good software design

On the Web is a interactivity. You should now complete this task.

3.8.4 Review questions

Q16: Choose the correct response that describes the term robust within software
development:

a) The program is strong and hardy
b) The program may be ported to a different machine architecture
c) The program can cope with mistakes that the user might make
d) The program runs to specification

Q17: Using a module library can reduce software development time because (choose
one):

a) Common programming modules can be used
b) Programmers do not need to write programs from scratch
c) Programmers can re-use library code in their projects
d) All of the above

3.9 Summary

The following summary points are related to the learning objectives in the topic
introduction:

� much has to be done in terms of design and testing of software before the coding
and implementation stages;

� various graphical design constructs are available;

� top-down design with stepwise refinement is a well-established technique;

� testing is an extremely time-consuming process;

c� HERIOT-WATT UNIVERSITY 2005

52 TOPIC 3. DESIGN NOTATION, DATA FLOW AND EVALUATION

� the main aim is to produce software that is reliable, robust, portable, efficient and
maintainable;

3.10 End of topic test

An online assessment is provided to help you review this topic.

c� HERIOT-WATT UNIVERSITY 2005

53

Topic 4

Personnel

Contents

4.1 Introduction . 54

4.2 Personnel . 54

4.3 The Client . 54

4.4 The Project Manager . 55

4.5 The Systems Analyst . 56

4.5.1 Collection of Information . 57

4.5.2 Analysis of the information . 58

4.5.3 Review Questions . 58

4.5.4 Production of the problem specification 59

4.6 The Programming Team . 60

4.7 Independent Testing Group . 61

4.7.1 Review Questions . 62

4.8 Summary . 62

4.9 End of topic test . 63

Prerequisite knowledge

There are no prerequisites for this topic.

Learning Objectives

� Identify the personnel at each stage of the Software Development Process

� understand the role of each person

54 TOPIC 4. PERSONNEL

4.1 Introduction

The Software Development Process involves many people throughout a computer
system’s lifecycle. In this topic you will meet the personnel involved, with a brief outline
of their activities.

4.2 Personnel

The software development process is initiated by one of two processes:

� either an old system is not working well or

� an altogether new system has to be set up.

A new system is created by a project. The creation of this, of course, is the work of
people, and it is important to say something about the personnel involved in the process.

Although many people may be involved, the key personnel are discussed under the five
main headings:

1. client

2. project manager

3. systems analyst

4. programmers

5. independent testing group

In a nutshell the process encompasses the following events:

The company who require the new or updated system are the clients. They approach
external consultants, the people who will create the system. The consultants appoint a
project manager, who carries out a feasibility study. If the feasibility study bodes well,
the management asks for a full system investigation. This is carried out by a systems
analyst from the consultants, who works with the project manager. It culminates in an
operational requirements specification.

When the operational requirements have been agreed by both the consultants and
the customer, a contract for the system is drawn up. The consultants put a team
of programmers on the job to code the specification, and the software development
process begins. Once the software has been implemented in a chosen language it
undergoes rigorous testing by an independent testing group.

4.3 The Client

In this case the client is represented by the management of the company. They choose
the projects that will go ahead. They review the progress of a project.

c� HERIOT-WATT UNIVERSITY 2005

4.4. THE PROJECT MANAGER 55

Obviously a project should benefit the organisation in some way, but it’s not always easy
to assess and compare the benefits that different projects might bring.

One project might be relied upon to break even or show a small profit, another might not
be reliable at all but might make an enormous profit. A project might not make much in
itself but be worth doing because it could lead to future projects that would be immensely
profitable. Many projects are carried out not directly to make profit but to improve things
in the organisation. Non-profit making organisations often have to assess projects in
terms of the benefits they will confer rather than the money they will bring in.

It is important to note that the terms client and user do not necessarily mean the same
thing, but are sometimes used interchangeably. A client is someone or a group such as
management who buys or intends to buy some software for a particular purpose. A user
is someone who uses or will use the software.

Acting as the client for the organisation the appropriate personnel will be concerned with
the following activities:

� holding discussions with the consultants

� reviewing reports, and negotiating contracts

� ensuring the provision of relevant information to the project manager and other
members of the consultancy team

� deciding whether or not to carry on

� paying the consultants

The client, of course, can’t simply leave things up to the consultants. The client must
provide detailed direction to develop the project. They have to promote support for
the study within the organisation and ensure that the relevant resources are available
to the investigators. They must make sure that people with a stake in any possible
development are involved in the study. They must agree with the investigators on the
description of the problem and on the assignment of priorities. They represent the
organisation as client, and must make sure that all relevant information is given to
the consultants. When the study is completed, they have to evaluate the possibilities
presented.

Sentence completion - software development

On the Web is a interactivity. You should now complete this task.

4.4 The Project Manager

The project manager is responsible for the project. The project manager will be
appointed by the consultants.

The project manager supervises the project and carries out the initial stages. If it goes
ahead, the project manager will take charge of the project, from the first brainstorming
session to the software launch and implementation.

c� HERIOT-WATT UNIVERSITY 2005

56 TOPIC 4. PERSONNEL

It’s up to the project manager to keep the process on schedule by whatever means
possible. Sometimes it may involve ’cracking the whip’ to make sure the work is up to
standard and that important deadlines are met - being a project manager means being
accountable for the entire duration of the project.

Project managers are easy targets for criticism because the success or failure of a
project is often dependent on their decisions. Hence it can be a thankless task at times
for this overworked person!

The most time-consuming undertaking of all will be managing people whether they be
clients or as members of the consultancy team.

With clients, the project manager:

� needs to extract all the on-going relevant information from the client and force
him/her to make decisions regarding software specification

� has the ability to accommodate substantial changes to the original specification
made by the client from the original specification and offer revised schedules and
budgets at short notice.

With his/her own team, the project manager:

� adopts a counselling role for the members, offering therapy to disgruntled or
stressed-out employees

� promotes good welfare by raising team spirit through regular, personal meetings
and positive appraisal.

A job description for a typical project manager might involve the following requirements:-

� have experience in dealing with a variety of clients

� the ability to manage a team

� possess excellent verbal and written communication skills

� have strong attention to detail

� possess the ability to create schedules and budgets

� show remarkable endurance under stress

4.5 The Systems Analyst

The systems analyst carries out the system investigation. (In large systems, the analysis
might be carried out by a team of analysts.)

The systems analyst is appointed by the project manager.

Systems analysts are active in the design, testing and implementation phases of the
project. They often work in a team, with significant liaison with external or internal clients.

c� HERIOT-WATT UNIVERSITY 2005

4.5. THE SYSTEMS ANALYST 57

Systems analysts will usually have learnt some programming but they won’t necessarily
be programmers. It could not be taken for granted that an analyst would know anything
about the programming language in which the system will be implemented

The aim of the systems analyst is to produce a clear specification that the rest of the
development team will use in the subsequent stages.

Analysts begin an assignment by discussing the systems requirements with company
managers (clients) and users to determine the exact nature of the problem. They define
the goals of the system and divide the solutions into individual steps and separate
procedures.

Full systems analysis has three phases:

1. collection of information

2. analysis of information collected

3. production of a problem specification or user requirements specification.

Identifying Personnel involved in a Systems Development

On the Web is a interactivity. You should now complete this task.

4.5.1 Collection of Information

There are various methods used for gathering information. These include:

(a) Interviews.

The analyst talks face to face with clients, to find out how the current system works and
what is required of the new system.

The analyst seeks answers to the obvious questions beginning with these words: what
does the system do, where are these things done, when are they done, why are they
done, and who does them?

Many of these techniques are essentially iterative. The answers to questions often raise
further questions, which the analyst must go and ask, and so on.

(b) Questionnaires.

Where the current system has a large number of users, the analyst might construct
a questionnaire for everyone involved. People often respond more frankly to an
anonymous questionnaire. On the other hand, the response rate can be low.

(c) Observation.

The analyst studies the current system and observes how it works. This is useful for
bringing to light things that users take for granted.

(d) Document analysis.

Many different kinds of document are involved in a system: the documents that the
system produces; the documents it uses i.e source documents and the documents that
affect how the system works (such as documents that spell out the procedures to be
followed in using the system). The first gives the analyst an idea of what the new system

c� HERIOT-WATT UNIVERSITY 2005

58 TOPIC 4. PERSONNEL

will have to produce, and the second will help understanding of the workings of the
current system.

(e) Expert Knowledge

The analyst has to try to gain understanding of the processes the new system is
supposed to help.

This understanding is important because particular people tend to take their own special
knowledge for granted and as a result don’t mention important requirements to the
analyst.

A basic understanding of the process will allow the analyst to ask more searching
questions during the interviews with key informants.

4.5.2 Analysis of the information

When the analyst considers that enough information has been gathered, work starts
on the analysis. However, it may well be that the analysis reveals shortcomings in the
information so far obtained. In such a case, iteration arises again: the analyst has to go
back for more information.

Having gathered information, the analyst has to understand it. All computer systems
have three sub-systems:

� input

� processing

� output

The basic question is how to process the input to get the required output.

In small, straightforward cases, this can be answered by studying the information and
giving it some thought.

More complicated cases are easier to understand if the analyst creates a model of
the system. This model focuses on the essential workings of the system and the
connections between the component parts.

4.5.3 Review Questions

Q1: In the development process the client representative is best described as (choose
one):

a) The group who will use the software
b) The group who will test the software
c) The group who will purchase the software
d) The group who will write the software

c� HERIOT-WATT UNIVERSITY 2005

4.5. THE SYSTEMS ANALYST 59

Q2: In a company the idea of starting a new project is mainly to:

a) Make as large a profit as possible
b) Use up surplus capital otherwise it will diverted elsewhere
c) Give the users in the company something else to do
d) Benefit the organisation in some way

Q3: Which one of the following statements is NOT true of the systems analyst?

a) The systems analyst is appointed by the project manager
b) The systems analyst discusses the system requirements with the clients
c) The systems analyst determines the exact nature of the problem
d) The systems analyst is responsible for the entire project

Q4: The purpose of the systems analysis is to:

a) Allow the systems analyst to produce a clear specification of the problem
b) Allow the client to say how much the project will cost
c) Allow the project manager to dictate whether the project should go ahead
d) Allow the collection of information that the company will need anyway

Q5: If a project falls behind schedule, who is responsible for getting it back on track:

a) The client
b) The project manager
c) The systems analyst
d) The project will eventually recover itself

4.5.4 Production of the problem specification

Once the analyst has arrived at a clear idea of the problem, this is expressed
in a document called a specification. It may be called the problem specification,
requirements specification or user requirements specification.

The specification includes a full description of the problem. All the inputs, processes,
and outputs are described. No system works on its own, independently of the outside
world: certain assumptions have to be made about the boundaries between a system
and its environment, and these must be indicated, described and included.

In some cases, the specification represents an agreement between the clients and the
development team. The process of reaching agreement will be iterative: the analyst will
present a draft specification to the clients, who will suggest amendments, and so on,
until a specification is agreed.

The specification is used throughout the rest of the development process. Material
produced is based on it and compared with it. For example, test data will be drawn up
on the basis of the specification.

The specification can be used as a checklist, to ensure that the development process
remains on target.

A systems analyst’s main task can be summarised as follows:

� translating client requirements into highly specified project briefs

� identifying options for potential solutions and assessing them for both technical

c� HERIOT-WATT UNIVERSITY 2005

60 TOPIC 4. PERSONNEL

and financial suitability

� presenting proposals to clients

� working closely with programmers and a variety of end users to ensure technical
compatibility and user satisfaction

� ensuring that budgets are adhered to and deadlines met

� drawing up a testing schedule for the complete system

� overseeing the implementation of the new system

� providing training to users of the new system

4.6 The Programming Team

The programming team is responsible for the second part of the project creation, the
coding phase of the software development process. They work to the design created
by the systems analyst. They are also responsible for testing the software, and for
maintaining it once it has been installed. The team will report to the systems analyst.

The analyst schedules the work, keeps an eye on performance, and oversees the
development of the system.

In respect of production, a programmer’s work is in two parts:

First the detailed logic of the modules in the system has to be worked out. Data flow has
to be identified at all stages.

Second, the programmers write the code, test it and debug it though testing is often
done by a separate team.

The programmer is involved at all stages of integration of modules, and follows a
designed test strategy throughout.

In most cases, several programmers work together as a team under a senior
programmer’s supervision.

Programmers often are grouped into two broad types applications programmers and
systems programmers. Applications programmers write programs to handle a specific
job, such as a program to track inventory, within an organisation. They may also
revise existing packaged software. Systems programmers, on the other hand, write
programs to maintain and control computer systems software, such as operating
systems, networked systems, and database systems. These workers make changes
in the sets of instructions that determine how the network, workstations, and central
processing unit of the system handle the various jobs they have been given and how they
communicate with peripheral equipment, such as terminals, printers, and disk drives.
Because of their knowledge of the entire computer system, systems programmers often
help applications programmers determine the source of problems that may occur with
their programs.

Programmers will update, repair and modify existing programs. When making changes
to a section of code, they make other users aware of the changes by inserting comments

c� HERIOT-WATT UNIVERSITY 2005

4.7. INDEPENDENT TESTING GROUP 61

in the coded instructions so others can understand the program.

Programmers test a program by running it, to ensure the instructions are correct and
it produces the desired information. If errors do occur, the programmer must make
the appropriate change and recheck the program until it produces the correct results.
This process is called debugging. Programmers may continue to fix these problems
throughout the life of a program.

4.7 Independent Testing Group

Consider the following quote from computing expert in the field of software development:

"No, no, no, no, no.......the people who develop and implement code should have
absolutely no role in testing that code! A test team should be TOTALLY independent
from the implementation team..."

Quite an adamant view with a clear message!

Programmers would be less inclined to test their software to destruction and take into
effect test data that might cause unexpected results. - they have the knowledge of how
the functionality of the code was designed and will test accordingly. Also they probably
don’t have sufficient time to fully test the program under all conditions.

The software is, therefore, passed to other groups of people - independent test groups
who will undertake impartial testing.

Alpha testing

This is where the software, usually with minimum functionality at this stage, is
passed to personnel in-house who will undertake full, exhaustive testing under varying
circumstances. The test group focus on the implementation of the program specification,
and provide feedback to the programmers on specific aspects of the software.

Beta testing

From the alpha testing phase, beta testing represents the pre-release version of the
software which is made available to a large number of selected users in the outside
world. The software will be run on a variety of computer platforms under real conditions.

After successful beta testing the software is then released for general use, usually with
a version number.

For more on beta testing have a look at the following web site:

http://beta.intuit.com/public/upcomingBetaInfo.cfm

Roles within Software Development

On the Web is a interactivity. You should now complete this task.

c� HERIOT-WATT UNIVERSITY 2005

http://beta.intuit.com/public/upcomingBetaInfo.cfm

62 TOPIC 4. PERSONNEL

4.7.1 Review Questions

Q6: The program specification is an important document in the software development
process. The main reasons for this is (choose one):

a) It can be used as a checklist to ensure the project is on target
b) Test data will be drawn up on the basis of this document
c) It describes all the inputs, outputs and processes involved in the project
d) All of the above

Q7: Which one of the following is not true of the programming team?

a) They report directly to the project manager at all stages of programming
b) They are able to modify and repair existing programs
c) They are responsible for all test strategies concerning the software
d) They are overseen by the systems analyst at all stages of their work

Q8: The completed project is usually tested by an independent group. This is because
(choose one):

a) Independent test group will have better facilities for testing software
b) Programmers will tend to test only within the functionality of their own code
c) Independent test group will not test further than they have to so saving time
d) Programmers are happy to test their programs to destruction

Q9: If a project begins to run over budget then this will be the responsibility of one of
the following personnel to change this state of affairs:

a) The client
b) The programming team
c) The systems analyst
d) The project manager

Q10: In beta testing, which one of the following is true?

a) Testing is done in-house
b) Testing is done by specialist personnel at cost
c) Testing is done by external groups on a variety of computer platforms
d) Testing focuses on the problem specification

4.8 Summary

The following summary points are related to the learning objectives in the topic
introduction:

� personnel involved in the software development process;

� various levels professional expertise required at each stage of the process;

� it is an iterative process involving on-going communication at all stages;

� the final program may not meet client specification for various reasons.

c� HERIOT-WATT UNIVERSITY 2005

4.9. END OF TOPIC TEST 63

4.9 End of topic test

An online assessment is provided to help you review this topic.

c� HERIOT-WATT UNIVERSITY 2005

64 TOPIC 4. PERSONNEL

c� HERIOT-WATT UNIVERSITY 2005

65

Topic 5

Languages and Environments

Contents

5.1 Introduction . 67

5.2 Programming Languages . 67

5.3 Classification of High Level Languages . 68

5.4 Procedural / Imperative languages . 70

5.4.1 Review Questions . 72

5.5 Declarative languages . 73

5.6 Event-driven languages . 74

5.7 Scripting languages . 76

5.7.1 Benefits of scripting languages . 77

5.7.2 The need for scripting languages . 79

5.7.3 Creating a Macro . 80

5.7.4 Running A Macro . 80

5.7.5 Review Questions . 81

5.8 Other Language Types . 82

5.9 Translation methods . 82

5.9.1 Compiler . 82

5.9.2 Interpreter . 83

5.9.3 Respective Advantages . 83

5.9.4 Review Questions . 85

5.10 Summary . 85

5.11 End of topic test . 85

Prerequisite knowledge

Before studying this topic you should be able to:

� describe and compare machine code and high level languages;

� explain the need for translation of high level language;

� describe the function of a compiler;

� describe the function of an interpreter;

� describe the process of recording a macro;

66 TOPIC 5. LANGUAGES AND ENVIRONMENTS

� assign a keystroke to a macro;

� describe examples of the use of macros;

� describe the features of a text editor.

Learning Objectives

� understand the differences between procedural, declarative and event-driven
languages

� be able to describe the uses of compilers and interpreters

� understand the functions and efficiencies of compilers and interpreters

� be able to describe the features and uses of scripting languages

� understand how to create and edit a macro

� understand the need and benefits of scripting languages

� be able to describe the use of module libraries

c� HERIOT-WATT UNIVERSITY 2005

5.1. INTRODUCTION 67

Revision

Q1: Programs are written in high level languages and then translated before they can
be executed by a computer. This is because:

a) Computers do not understand English words
b) It is easier to write high level code
c) Computers only understand machine code
d) All of the above

Q2: Two translator programs are a compiler and an interpreter. Which one of the
following statements is true?

a) A compiler produces object code translating a program line by line
b) A compiler produces object code for a whole program in one operation
c) An interpreter produces object code for a whole program in one operation
d) A compiler translates and executes a program line by line.

Q3: Which one of the following error situations would be picked up by either a compiler
or interpreter?

a) Run time error
b) Logic error
c) System error
d) Syntax error

5.1 Introduction

This topic will introduce you to the various types of programming languages that would
be available at the implementation phase of the software development process. As
you will see the choices are numerous and expertise is required in matching the
system specification with the most appropriate programming language available. How
programming languages translate source code into object code is further explained,
emphasising the advantages and disadvantages of the methods used.

5.2 Programming Languages

During the implementation phase of the software development process the program
design will be coded using a suitable high level programming language. High-level
languages help software developers to identify more with the problem rather than the
hardware on which the final program will run i.e. they are problem oriented. Program
statements and expressions in such languages generally incorporate English words
which mean that they are easier to understand and use than assembly code.

There are many programming languages that could be used for the implementation
phase of software development, such as C and C++, Pascal, and Java. Older languages
still much used include Cobol and Fortran. Cobol is used mostly on main frames
for batch processing: organisations still use it for new programs because all their old

c� HERIOT-WATT UNIVERSITY 2005

68 TOPIC 5. LANGUAGES AND ENVIRONMENTS

programs are written in it. Fortran is still used for applications where the emphasis is on
numerical processing (such as processing meteorological data.)

In this topic and others, all language features are exemplified using Visual Basic

The choice of language should be based on:

� which language has the facilities most appropriate to solving the required problem

� a suitable compiler/interpreter available for the client hardware.

If the task requires text processing, for example, a language which supports data of
type string is necessary. In other circumstances a language which supports arithmetic,
logical operators, sound or graphics may be necessary.

Another factor is portability. A program is portable to the extent that it can be used on
different computer hardware. If the programs are in the form of machine code a program
compiled into machine code on a PC will not be executable on a different machine, eg
Apple Macintosh.

5.3 Classification of High Level Languages

At the time of writing it has been estimated that around 2,500 programming languages
have been catalogued over the years.

For further information and a chance to download a time line of language development
as a poster, consult the following links:

http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm

http://www.levenez.com/lang/history.html#08

Classification of programming languages is fraught with problems since, as you will see,
many languages can fall into more than one category.

Historically programming languages were classified according to whether they were a
general purpose language that could be applied to a broad range of situations, or a
special purpose language that were designed for specific tasks.

Table 5.1 summarises the main high level languages and variants:

c� HERIOT-WATT UNIVERSITY 2005

http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm
http://www.levenez.com/lang/history.html#08

5.3. CLASSIFICATION OF HIGH LEVEL LANGUAGES 69

Table 5.1: Historical classification of programming languages

Area Language(s) Purpose

General
purpose

ALGOL , ALGOL 60,
ALGOL 68
(ALGOrthimic
Language)

Coding of general algorithms. ALGOL 60
was the first defined language i.e. code
produced identical results on any
mainframe computer world-wide. Also
introduced procedural programming and
parameter passing. Derivations are:

Pascal, C, C++ and COMAL

Scientific FORTRAN (FORmula
TRANslation)

Developed in the 1950’s for use in
scientific and engineering applications
and is still in use today.

Commercial COBOL(COmmon
Business Oriented
Language)

Suitable for data processing applications.
So widely used, COBOL 97 is the latest
version in use.

Education Pascal Developed from ALGOL, developed in the
1970’s to teach structured programming

BASIC (Beginners All
Symbolic Instruction
Code)

One of the first interpreted languages,
designed for beginners to programming
in the 1960’s.

COMAL (COMmon
Algorithmic Language)

The language promoted the use of
structured code as opposed to the
’spaghetti code’ from using BASIC.

Artificial
Intelligence

PROLOG(PROgramming
in LOGic)

Used in the construction of AI
applications, expert systems and in the
teaching of AI.

Operating
systems

C Derived from UNIX as the ’C’ shell it now
has many uses in programming, being
very close to assembly language.

Alternatively high level languages can be classified according to their structure and
purpose. Although quite an extensive list, for the purposes of this topic the following
categories are of importance:

1. Imperative/procedural

2. Declarative/logical

3. Event-driven

4. Scripting

Two other types that tend to be associated with the above categories in present-
day programming techniques are:

5. Object-oriented

6. Functional

c� HERIOT-WATT UNIVERSITY 2005

70 TOPIC 5. LANGUAGES AND ENVIRONMENTS

A table based on this language classification is shown Table 5.2

Table 5.2: Classification based on structure

Programming
Language

Structure Purpose

Pascal procedural general purpose language, widely
used

Visual BASIC procedural windows interface applications,
multimedia

PROLOG declarative artificial intelligence

Visual C++ event-driven used as front end to develop user
interface

COBOL procedural business use

Java object-oriented platform independent - an object
oriented language

VBscript scripting creating and editing macros

FORTRAN 90 object-oriented scientific and software engineering

Lisp functional artificial intelligence uses - many
other languages are derived from
it

JavaScript scripting writing and enhancing web pages

BASIC procedural easy to learn, originally developed
to teach non-specialists the art of
programming

FORTRAN procedural scientific programming language

The above list is not in any way rigorous. There are many instances of particular
languages fitting into more than one category. For example, although Visual Basic is
listed as an imperative language it can also be classed as an event-driven language or
as an object-oriented language.

5.4 Procedural / Imperative languages

Imperative languages are also known as procedural languages because they employ
structures which include procedures and functions. Programs generated in procedural
languages involve a sequence of operations and are often described as linear programs.

A procedural (imperative) programming language tells the computer how to do
something, written as an ordered sequence of steps that describe exactly what it must
do at each step. These instructions, which form the basis of an algorithm, are followed
in written order by the computer.

c� HERIOT-WATT UNIVERSITY 2005

5.4. PROCEDURAL / IMPERATIVE LANGUAGES 71

Three basic constructs are used to define the order of the steps:

1. sequence (the logical ordering of steps);

2. selection (a step or sequence of steps are performed if a condition or set of
conditions is true);

3. iteration (a step or sequence of steps are carried out repeatedly).

Both iteration and selection are control constructs because they can alter the flow of
control of program execution. You will see more of this in later topics.

Examples of procedural languages are Algol, Fortran, Pascal, Basic, C and COBOL.

Example of a program to read data into an array and output results

Problem: In Visual Basic we might tell the computer how to input data into an array and
then print out the results:

Solution:

!"��#��
 �� ���� �� ����� $��� ���
 ��
�� ��� ����� ���
 �	�

"������ %	� &�

�����&���'��

(�
)��
��� *� %����#

(�
 &�	�� *� ���#��

!*���#� ����� ���	��

)��
�+� � ,-���� -�������,

)��
��� � ,.����� .���,

)��
��� � ,/������ /�����,

)��
��� � ,&����� &����,

)��
��� � ,0	����� 0	�����,

)��
��� � ,1����� 1��������,

2�� &�	�� � +)� �

"���� ,)��
�,3)���4�3 &�	��5�3)������3)��
�&�	���

6��� &�	��

"����

��� %	�

Notice that:

1. the program is expressing at each step precisely how each statement is executed;

2. the program has beginning and end points, which is an indicative feature of
procedural language programs.

c� HERIOT-WATT UNIVERSITY 2005

72 TOPIC 5. LANGUAGES AND ENVIRONMENTS

The program output is:

Structures in procedural languages

On the Web is a interactivity. You should now complete this task.

5.4.1 Review Questions

Q4: One of the main reasons for the many programming languages existing is:

a) Older languages can no longer function in the present day computer systems
b) Languages have to be adapted so new versions are released
c) There are many different types of operating system
d) People devise new languages because they do not like existing ones

Q5: Which one of the following lists only contains general purpose programming
languages?

a) Pascal, C, Basic,COBOL
b) Algol, Fortran, Prolog, Comal
c) Basic, Algol, Pascal, Comal
d) Fortran, Basic, Comal, COBOL

Q6: In computer programming there are three basic constructs. Which one of the
following is NOT a programming construct?

a) Sequence
b) Selection
c) Iteration
d) Moderation

c� HERIOT-WATT UNIVERSITY 2005

5.5. DECLARATIVE LANGUAGES 73

Q7: Which one of the following languages could be classified as being event driven?

a) Cobol
b) C
c) Visual Basic
d) Prolog

Q8: Which of these is not true of procedural languages?

a) They employ procedures and functions
b) Programs written in the language are linear in structure
c) Programming instructions are explicit
d) They are low level languages

5.5 Declarative languages

Declarative languages model problem solutions very differently. Programmers specify
what the problem is rather than how to solve it. In PROLOG, for example, a program
represents knowledge as facts and rules. Collectively facts and rules are called clauses.
A proposition is the smallest unit of knowledge that can be judged true or false, such as
"a collie is a sheepdog", or "a beagle is a hound" or "George passed a ball to Steven".

In PROLOG these statements would be written as:

�������#��������3 ���� ���� � ������ �� � �������#

��	������#��� ���� ���� � ���#�� �� � ��	��

������ � �����#���#�7�������3

A rule contains a condition:

&��� �	�� �� ���� ��� ����'�� �� �	
���

This would be expressed in PROLOG as:

�	���8� 9: ����'�� ���87�	
���� where 8 = cats

Facts and rules form the basis of PROLOG programs to represent knowledge that are
stored in a database. This database can then undergo querying.

Example - Using facts, rules and queries

Problem: Suppose we want to find out whether a person drives a fast car. We start by
building a set of facts and rules for our knowledge database.

Solution:

�������;	���3 : ���� �� ��� ���� ���� 0	�� �� � ������

�������;�
���3

�����������;�
��7������������3

c� HERIOT-WATT UNIVERSITY 2005

74 TOPIC 5. LANGUAGES AND ENVIRONMENTS

�����������;	��7��������3 : ���� �� ��� ���� ���� 0	�� ������ � "������

����������������8� 9: �����������87<�

��� < � ,�������,: ���� �� � �	�� ��� 8 ������# �

���� ���

In this example we could ask the program to tell us whether Judy drives a fast car by
typing the query:

=����������������;	���
 The result would be YES since the goal is satisfied.

If we asked:

=����������������;�
���

then the result would be NO as �����������;�
��7<� would evaluate <�,���� ������,.

This would then cause the rule ����������������;�
��� to fail as < does not equal
"porsche" and the goal is not satisfied.

You can see from the code that there is no description of the type of data or its internal
representation. There are simply statements of facts and a rule.

Contrast this with a procedural language where the programmer would need to set up a
structure to hold the knowledge and predefine its type (string, number etc). Then they
would need to describe the steps taken to search the structure in order to answer the
query. A declarative/logical language is simplistically described as telling the computer
what to do and not how to do it.

Goals and clauses

On the Web is a interactivity. You should now complete this task.

5.6 Event-driven languages

Event driven programming languages have evolved to handle events.

Events can be initiated at two levels:

1. at system/hardware level: events can include timers, interrupts, loading of files etc;

2. at language/system level: events include mouse clicks, keyboard presses and
cursor movements.

In Visual Basic each object has a set of events. An event is an action that Visual Basic
can detect and respond to. A user clicking on a command button, is an example of an
event.

The following examples show the action of clicking on two buttons in a Visual Basic
program:

c� HERIOT-WATT UNIVERSITY 2005

5.6. EVENT-DRIVEN LANGUAGES 75

Button1 ’Display Message’ produces a message in the label window

Pressing the ’clear’ button removes the message.

A typical event driven program has the effective structure:

�� ���������

�� ����� ����

�� ����� ��	��� �� 8 ����

������ 8

���� �� ����� ��	��� �� < ����

������ <

After each event is handled, nothing happens until the next event occurs.

Note that event-driven programs do not have a predefined pathway in the execution of
the code, as opposed to imperative programming style i.e. they have no beginning or
end.

Graphical user interface programs are typically programmed in an event-driven style
using languages such as Visual Basic and Visual C.

Even Java, (an object-oriented language) can be used for event-driven Windows-style
programming with AWT (Abstract Window Toolkit). This a large collection of resources

c� HERIOT-WATT UNIVERSITY 2005

76 TOPIC 5. LANGUAGES AND ENVIRONMENTS

for building graphical user interfaces within the Java environment.

Sentence completion - languages

On the Web is a interactivity. You should now complete this task.

5.7 Scripting languages

A Scripting language is a style of ’programming’ that produces ASCII text-based scripts
which are usually designed for writing small programs. Scripting languages support high
level language control features such as selection and iteration.

Scripting languages are not new! Job Control Language (JCL) was one of the earliest
scripting languages to be used in the 1960s and 1970’s on mainframe computers using
punched card input.

Examples of present day scripting languages are VBScript, JavaScript, Perl, Python and
TCL (Tool Command Language)

Applications that provide scripting capability allows the user to extend the functionality
of the application by programming a sequence of actions. For example, in Filemaker
Pro (a database package) it is possible to write scripts that open and close files, copy
data from records or enter a certain database mode such as browse or find.

An example script in Filemaker Pro is shown in Code 5.1

����� .��$�� >���?@

A� �� -���	� ?,-���	� �,@

����� 2��� >��� ?@

%�� 2���� ?,&�
�	���# &�	���,7 ,,%�&4,,@

"�����
 2���?@

%��� ?/������7 6� (����#@

A� �� -���	�?,%� /����� 2����,@

Code 5.1

Another example is VBScript which is a cut-down version of Visual Basic, used to
enhance the features of web pages in Internet Explorer. Below in Code 5.2 is an
example of a section of VBScript embedded in HTML code.

BC)>-D

BC�*(D

B))-�D)��� �� E.%����� �� ������FBG))-�D

B%&/ ") -*6AH*A��,E.%�����,D

>�#.�� ,1����
� �� E.%�����,

B"D &���' �� ��� �	���� ����$ BG"D

B 6"H))<"� �,.	����, 6*>��,�
�&���', E*-H��,&���',D

BG%&/ ")D

Code 5.2

c� HERIOT-WATT UNIVERSITY 2005

5.7. SCRIPTING LANGUAGES 77

5.7.1 Benefits of scripting languages

One of the main benefits of scripted languages is that they require no compilation. The
language is interpreted at run-time so the instructions are executed immediately.

Scripting languages also have a simple syntax which, for the user:

� makes them easy to learn and use

� assumes minimum programming knowledge or experience

� allows complex tasks to be performed in relatively few steps

� allows simple creation and editing in a variety of text editors

� allows the addition of dynamic and interactive activities to web pages

Also, scripting languages are generally portable across various hardware and network
platforms and scripts can be embedded in HTML documents for added functionality.

Specialised scripting languages include:

Perl (Practical Extraction and Report Language). This is a popular string processing
language for writing small scripts for system administrators and web site maintainers.
Much web development is now done using Perl.

Hypertalk. It is the underlying scripting language of HyperCard, while Lingo is the
scripting language of Macromedia Director, an authoring system for develop high-
performance multimedia content and applications for CDs, DVDs and the Internet.

AppleScript, a scripting language for the Macintosh allows the user to send commands
to the operating system to, for example open applications, carry out complex data
operations. An example script is shown in Code 5.3

c� HERIOT-WATT UNIVERSITY 2005

78 TOPIC 5. LANGUAGES AND ENVIRONMENTS

::���� ��
��� *���������� $��� ������

::���	������� ����	#� ������� �� � ������ ���	
�

::��
����# ������� 	������� ����� ���
 ����� 	���!�

::���������

�� ������������2������

���� ����������� ,2�����

�� ��� ���	�� �� ������� �� ����2������ D + ����

������ $��� �����2����� �� ����� ������ �� ����2����� �� ����

�� ���� ,>��� (��� "����������, �� �����2����� ������ ����

������ ���� ,>��� (��� "����������, �� �����2�����

��� ��

�� ���� ,�
��� %����	�, �� �����2����� ������ ����

������ ���� ,�
��� %����	�, �� �����2�����

��� ��

�� ���� ,�
���%���"����������, �� �����2����� ������ ����

������ ���� ,�
���%���"����������, �� �����2�����

��� ��

��� ������

��� ��

��� ����

��� �������

Code 5.3

JavaScript, perhaps the most publicised and well-known scripting language was initially
developed by Netscape as LiveScript to allow more functionality and enhancement
to web page authoring that raw HTML could not accommodate. A standard version
of JavaScript was later developed to work in both Netscape and Microsoft’s Internet
Explorer, thus making the language to a large extent, universal. This means that
JavaScript code can run on any platform that has a JavaScript interpreter.

Typical uses of JavaScript include:

a) Image or text rollovers. If the user rolls the mouse over a graphic or hypertext
then a text or graphic box will appear:

����*++���������������3+����������+
�������1..4+�������+������+���������+
����1+�������	����561
��	������������������������

������������� �

b) Creating a pop-up window to display information in a separate window from
the Web page that triggered it. This is useful if the user requires to perform a
simple calculation or consult a calendar for inputting dates. This is achieved by
embedding ActiveX controls or Java applets into the script.

c� HERIOT-WATT UNIVERSITY 2005

5.7. SCRIPTING LANGUAGES 79

"#7�1..6
��������8�������"��������

-
9

-2
11
1:

;
-6
1-
19

<
-4
1.
1;

2
-1
-:
1<

6
--
-9
12

4
-.
-;
16

1
:

-<
14

'�����

!������'�������

c) Validating the content of fields. When filling in forms, each field, especially
required fields denoted by an asterisk, are validated for correct input. If the field is
left blank or incorrect information entered then a user message will be generated
and you may not continue.

!���	
���������������������������	��������������������	���
	����������

=�����*
=�"�����)���*
= ����)���*

=#������������*
=!�����)��
��*

������

���	�����������3��	������������������������������
�����������	�������>�����������������������������������

�����

=�����*
=�"�����)���*
= ����)���*

������

5.7.2 The need for scripting languages

Nowadays scripting languages are becoming more popular due to the emergence
of web-based applications. The market for producing dynamic web content is now
expanding extremely rapidly such that new scripting languages have been developed
to allow users with little or no programming expertise to develop interactive web pages
with minimum effort.

c� HERIOT-WATT UNIVERSITY 2005

80 TOPIC 5. LANGUAGES AND ENVIRONMENTS

Also the increases in computer performance over the past few years has promoted
a comparable increase in the power and sophistication of scripting languages that,
unlike conventional programming languages, can even have certain security features
built-in. Downloading web-based content from a remote site to a user’s local machine
can include animations, graphics, MP3 audio files, video clips and so on and this is
authenticated by the scripting language.

However be warned! Executable code can inadvertently be downloaded from a
remote server to a web browser’s machine, installed and run using the local browser’s
interpreter. This is easily done by visiting dubious web sites or downloading programs
without valid authenticity. The user is probably unaware of anything devious occurring.
This is a weakness in the formal rules defining scripting languages like JavaScript and
VBScript.

5.7.3 Creating a Macro

A macro is a way to automate a task that you perform repeatedly or on a regular basis.
It is a series of commands and actions that can be stored and run whenever you need
to perform the task. Instructions can be simple, such as entering text and formatting it,
or complex, like automating tasks that would take several minutes to do manually Macro
contents consist of ASCII text and can be created and edited in any simple text editor.

Many programs (like Microsoft Word and Microsoft Excel) can create macros easily. All
you have to do is "record" a set of actions as you perform them. For example, you
could record opening a new document using a specific template, inserting a header and
inserting a name and address and greeting. Each time you "replayed" the macro, it
would perform those tasks.

For programs that don’t include a macro facility there are numerous shareware macro
programs that can be downloaded and used in any application. Such a program is Macro
Express 2.1 which is ideal for beginners.

5.7.4 Running A Macro

A macro can be initiated by:

� pressing selected key combination (hot keys)

� clicking an icon on the toolbar that has been created for the macro

� running the macro from the Tools menu of the application.

Example tasks could include:

� inserting your name and address on documents

� formatting text with specified font and size

� accessing websites from a list of ’favourites’

� inserting special symbols or graphics into documents

� automate playing of audio CDs while you work on the computer

c� HERIOT-WATT UNIVERSITY 2005

5.7. SCRIPTING LANGUAGES 81

� formatting of spreadsheet cells

� creating headers and footers.

Code 5.4 is an example VBScript listing for a macro to create a table in Microsoft Word:

!>���� �� ������ � ����� �� 1���

!

%	� >�������

!

! >����� >����

! >���� �������� +�G+�G�++� �� 0��� %
���

!

*�����(��	
���
)�����
*�� /��#�9�%��������
/��#�7 6	
/�$�9�I7

6	
&��	
��9� �

�7 (���	��)����.�������9�$�1���J)����.�������7

*	��2��.�������9� �

$�*	��2��1����$

1��� %��������
)��������

 �
%���� BD ,)���� A���,)���

%���� � ,)���� A���,

��� �

*����%����C�����#/�$� �)�	�

*����%����-���/�$ �)�	�

*����%����2����&��	
� �)�	�

*����%����-���&��	
� �)�	�

��� 1���

��� %	�

Code 5.4

5.7.5 Review Questions

Q9: An event-driven language differs from other languages in that (choose one):

a) Programs have no pre-defined pathway
b) Programs are initiated entirely from mouse clicks
c) Program events cannot be nested
d) Programs are difficult to write

Q10: Which of these is not a benefit of scripting languages?

a) They are easy to learn and use
b) Allow complex tasks to be performed in relatively few steps
c) Web pages can be made more dynamic
d) They describe a problem rather than how to solve it

c� HERIOT-WATT UNIVERSITY 2005

82 TOPIC 5. LANGUAGES AND ENVIRONMENTS

Q11: Many software applications include a macro facility. Which one of the options best
describes a macro?

a) Macros are not easy to edit
b) The creation of a macro can be time-consuming
c) Macros automate repetitive tasks
d) A macro listing consists of complex code

Q12: One of the tasks that a macro could NOT perform would be:

a) Inserting special symbols or graphics into documents
b) Formatting a floppy disc
c) Creating headers and footers
d) Changing audio CDs

5.8 Other Language Types

Other important language types include object-oriented languages and functional
languages. You do not need to know about these for Higher Computing.

5.9 Translation methods

At the end of the implementation stage, all going well a structured program listing will
be produced, complete with internal documentation. This will be thoroughly checked
against the design and against the original specification.

The high-level code written at this stage is called source code which must be translated
into machine code, called object code that the computer understands.

There are two methods of translating source code into object code; a compiler and an
interpreter.

5.9.1 Compiler

A compiler, which is a complex program in itself, translates source code into object code
that is then loaded into main memory and executed.

c� HERIOT-WATT UNIVERSITY 2005

5.9. TRANSLATION METHODS 83

������
�������

�������
����

�������

������
���

�����������

'�������

5.9.2 Interpreter

Another form of translation that converts source code into object code is an interpreter.

�������
���������

�������
����

������
���

�����������

�����������

Unlike a compiler, an interpreter checks syntax and generates object code one source
line at a time. Think of this as very similar to a group of translators at a United Nations’
Conference, who each have to convert sentences spoken by delegates into the native
language of their representative.

When an error is encountered, the interpreter immediately feeds back information on
the type of error and stops interpreting the code. This allows the programmer to see
instantly the nature of the error and where it has occurred. He or she can then make the
necessary changes to the source code and have it re-interpreted.

As the interpreter executes each line of code at a time the programmer is able to see
the results of their programs immediately which can also help with debugging.

5.9.3 Respective Advantages

The main difference between an interpreter and a compiler is that compilation requires
analysis and the generation of machine code only once, whereas an interpreter may

c� HERIOT-WATT UNIVERSITY 2005

84 TOPIC 5. LANGUAGES AND ENVIRONMENTS

need to analyse and interpret the same program statements each time it meets them
e.g. instructions appearing within a loop.

For example the following Visual Basic code would be interpreted each time the loop is
entered:

2�� �&�	����� �)� �+

�%	
 � �%	
 5 �&�	�����

"��
(������ �%	

6��� �&�	�����

Errors

This has implications for error reporting. For instance, when the interpreter encounters
an error it reports this to the user immediately and halts further execution of the program.
Such instant feedback, pinpointing the exact location of the error, helps the programmer
to find and remove errors.

Compilers, on the other hand, analyse the entire program, taking note of where errors
have occurred, and places these in an error/diagnostic file. If errors have occurred then
the program cannot run. Programmers must then use the error messages to identify
and remove the errors in the source code.

Some compilers assist by adding line numbers to the source listing to help pinpoint
errors and all compilers will describe the nature of the error e.g. missing semi-colon,
expected keyword, etc. - although interpreting some compiler diagnostics is a skill in
itself.

Error correction can be very time-consuming and frustrating, particularly in the case
where spurious errors occur, e.g. many errors are highlighted in the source but the
cause of the error is a single, simple mistake. An example of this would be errors that
are generated by, say, a compiler, if a programmer simply misses out a semi-colon.

Speed

Another important difference is that interpreters can be 2 to 10 times slower than
compilers. One reason for this is that they translate the same statements within a loop
over and over again.

Compilers can produce much more efficient object code than interpreters thus making
the compiled programs to run faster.

Ease of use

Interpreters however are more suitable for beginners to programming since errors are
immediately displayed, corrected by the user, until the program is able to be executed.

On the whole compilers tend to be more difficult to use.

c� HERIOT-WATT UNIVERSITY 2005

5.10. SUMMARY 85

5.9.4 Review Questions

Q13: One of the main differences between a compiler and interpreter is:

a) An interpreter is faster then a compiler
b) A compiler is better for beginners
c) A compiler can produce more efficient object code
d) An interpreter is much harder to use

Q14: One disadvantage of using an interpreter is:

a) Looping structures have to be interpreted each time they are entered
b) It stops execution when an error is encountered
c) It helps the user to debug programs
d) An interpreter is ideal for beginners

Q15: High level languages have to be translated because (choose one):

a) Computers can only understand machine code
b) Source code is faster to run than object code
c) Programs run faster when converted to binary
d) All of the above

5.10 Summary

The following summary points are related to the learning objectives in the topic
introduction:

� there are numerous types of programming languages in use today;

� they are difficult to organise into discrete categories because of overlapping
properties;

� features of procedural languages lend themselves to most of the programming
tasks of the Higher computing course;

� high level languages have to be translated to machine code by compiler or
interpreter;

� syntax and semantics of the language are part of the translation process;

� types of errors can be picked up by translators;

� scripting languages are now of great use in web page design.

5.11 End of topic test

An online assessment is provided to help you review this topic.

c� HERIOT-WATT UNIVERSITY 2005

86 TOPIC 5. LANGUAGES AND ENVIRONMENTS

c� HERIOT-WATT UNIVERSITY 2005

87

Topic 6

High Level Language Constructs 1

Contents

6.1 Introduction . 90

6.2 The Programming Environment . 90

6.3 Building applications . 92

6.3.1 Creating a form and objects . 92

6.3.2 Attaching code to objects . 93

6.3.3 Input and Output Controls . 94

6.3.4 Input Methods . 95

6.3.5 Output Methods . 97

6.4 Program Structure . 100

6.4.1 Example program . 101

6.5 Data types . 103

6.6 Visual Basic Nomenclature . 104

6.6.1 Review Questions . 105

6.7 Declaring Variables . 106

6.7.1 Implicit and Explicit declaration . 107

6.8 Declaring constants . 110

6.8.1 Example program 1 - Calculating the circumference of a circle 110

6.8.2 Example program 2 - Use of a boolean variable 112

6.8.3 String variables and functions . 113

6.8.4 Concatenation . 114

6.9 Variables and scope . 117

6.9.1 Review Questions . 119

6.10 Operators . 120

6.10.1 Operator precedence . 121

6.11 Programming constructs . 123

6.11.1 Sequence . 123

6.11.2 Selection . 124

6.12 The IF Statement . 124

6.13 The If.. Then.. Else Statement . 127

6.13.1 Comparison Operators . 131

6.13.2 Relational operators . 131

6.13.3 Logical Operators . 132

6.13.4 Logical AND . 133

88 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

6.13.5 The Logical OR (Inclusive) . 135

6.13.6 Logical Not . 137

6.13.7 Review Questions . 137

6.14 Nested IF Statements (optional) . 138

6.15 If...Then...ElseIf (optional) . 140

6.16 The Select Case Statement . 145

6.16.1 Select Case Example 1 . 146

6.16.2 Select Case Example 2 . 147

6.16.3 Select Case Example 3 . 149

6.16.4 Select..Case Summary . 151

6.17 Summary . 151

6.18 End of topic test . 151

Prerequisite knowledge

Before studying this topic you should be able to describe and use the following
constructs in pseudo-code and a suitable high level language:

� input and output;

� numeric and string variables;

� assignment statements;

� arithmetical operations (+, -, *, /, ^);

� logical operators (AND, OR, NOT)

� conditional loops using fixed and complex conditions;

� IF statement;

� nested loops.

Learning Objectives

� understand the need for programming variables

� understand and be able to use real, integer, string and boolean variables

� understand string operations such as concatenation and substrings

� be aware of local and global variables

� understand what is meant by the scope of variables

� understand the nature and use of sub procedures

� understand the use of selection in programming an in particular the CASE
construct

c� HERIOT-WATT UNIVERSITY 2005

89

Revision

Q1: Which one of the following program constructs does NOT represents the process
of selection?

a) The IF..THEN statement
b) The FOR..NEXT loop
c) The CASE statement
d) The AND operator

Q2: One of the following program statements produces the value 13 for the variable
Answer. Which one?

a) Answer = 5 + 8 * 3 - 2
b) Answer = (5 + 8) * 3 - 2
c) Answer = 5 + (8 * 3) - 2
d) Answer = 5 + 8 * (3 - 2)

Q3: If the value of 1 represents TRUE and 0 represents FALSE which one of the
following statements is true?

a) 1 AND 0 = TRUE
b) NOT 1 = FALSE
c) 1 OR 1 = FALSE
d) 0 AND 0 = TRUE

Q4: Consider the following segment of programming code:

2�� � � � �� �

2�� � � � �� �

%	
 � � 5 �

6��� �

6��� �

"���� %	

When run what would be the final value of the variable Sum?

a) 2
b) 4
c) 6
d) 8

Q5: Which one of the following statements represents a valid string assignment?

a) Name = "Bert"
b) Number = "12345"
c) Paper = "Scots" + "man"
d) All of the above

c� HERIOT-WATT UNIVERSITY 2005

90 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

6.1 Introduction

In this topic you will be introduced to the Visual Basic programming environment.
Variables and data types are discussed, together with fundamental programming
structures. Formatted input and output constructs are described and exemplified using
Visual Basic code. More advanced techniques involve conditional statements such
as nested IF statements and the CASE construct. Each Visual Basic construct is
exemplified using pseudo-code and high level equivalent. .

6.2 The Programming Environment

In this topic, all language features are exemplified using Visual Basic 6.

Users of Visual Basic.NET should find few incompatible problems. Important differences
will be flagged, where appropriate.

Visual Basic 6

Visual Basic is an event driven programming language that works within the graphical
environment of Windows. Visual Basic code is associated with objects and each object
has a set of events associated with it.

Events are actions which Visual Basic detects and respond to. For example, a user
clicking on a command button on a form will generate a click event for that button;
pressing a key on the keyboard could initiate a load event for a programming module.
When an event is generated Visual Basic will run any code that you have entered for
that event. Since there may be many objects associated with a single program it means
that each object must be coded separately.

Objects are coded in Visual Basic using sub procedures that may be executed
individually or be linked together in one way or another.

Visual Basic Environment

When Visual Basic is launched using the Standard EXE option a number of separate
windows appear as seen in Figure 6.1 (Note: the layout of the windows on the screen
may be different from the example shown - they can be re-arranged to suit your own
preference)

c� HERIOT-WATT UNIVERSITY 2005

6.2. THE PROGRAMMING ENVIRONMENT 91

Figure 6.1:

The default screen that you can see is in design mode and consists of four main
windows:

1. a blank Form window which is the interface with the application (program) you
create. The visual design of the program is created on this form, which has
gridlines to help build objects like text boxes, label boxes and control buttons etc.
What is placed on a form will be seen in a window when the program is executed.

2. a Project window that displays the files that are created during the construction of
the program. These files could be forms, modules (blocks of code not attached to a
form), graphics, or control structures such as Active X, required for the successful
running of your program. Note that only one project can be open at any given time.

3. a Properties window that displays the properties of the objects created in the
program. The form window itself has properties associated with it.

4. a Toolbox window that consists of all the controls necessary for developing a
program. Boxes, labels, buttons, and other objects can be drawn on the form
as part of the visual interface and also to allow input and output of data.

At this stage it is important to realise that when you create a program, each form,
module, graphic, and ActiveX control is saved as an individual file

c� HERIOT-WATT UNIVERSITY 2005

92 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Table 6.1 shows the common files types in a Visual Basic Project:

Table 6.1:

File Type Description

FRM Form
BAS Module
OCX ActiveX control
CLS Class module
VBP Visual Basic project

When starting to write Visual basic programs the two most common file types are Form
and Project.

6.3 Building applications

Constructing a program in Visual Basic involves two processes:

1. creating the visual design of the program

2. entering and implementing programming code.

6.3.1 Creating a form and objects

In the first process the properties of the form are established followed by the creation of
controls inside the form. The properties of each control are then established.

Pressing function key F4 on an active button will open the Properties box as seen above.

c� HERIOT-WATT UNIVERSITY 2005

6.3. BUILDING APPLICATIONS 93

Figure 6.2 shows five objects: 3 control buttons, a message box, and a form each with
event coding.

Figure 6.2:

6.3.2 Attaching code to objects

In the second process programming code is written for each event and attached to each
object in the form.

The code for each object is written in the form of a sub procedure.

A sub procedure or sub program is a block of code that is implemented when an event,
such as a mouse click is actioned.

Double-clicking on any of the objects in a form or even the form itself will open up the
program editor and reveal the code for each event. For example clicking on the Exit
button will display the code editor as follows:

c� HERIOT-WATT UNIVERSITY 2005

94 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

All Visual Basic code is written between the lines that Visual Basic enters for you:

"������ %	� �
������&���'��

��� %	�

On the right of the screen you can see a list of other events that are part of the Visual
Basic environment.

6.3.3 Input and Output Controls

Visual Basic programs do not output to the computer screen as such. Instead they use
a form which is, essentially a Visual Basic window that is the interface between the user
and the application and allows information to be input by the user or displayed to the
user. There may be more than one form in a Visual Basic project.

Information may be input to a program via the keyboard or read directly from data files.
The program may also contain data that is assigned directly to variables or constants
during execution time.

The output of information may be achieved through a variety of Visual Basic control
structures that are placed on the form at the design stage. Output can also be directed
to a printer or to an existing file.

Since file I/O is beyond the scope of the Higher Computing course, only the graphical
methods will be discussed at this stage.

The stages in writing a program in Visual Basic involve the following aspects:

� Design stage: the form is used to compose the graphical elements of the program.
Command buttons and control boxes (objects) can be placed anywhere on the
form and these will dictate how the application is to run.

� Setting properties: the form itself and the objects it contains can have various
properties set thereby producing the visual effects required of the program.
Although there are numerous properties for each object the main ones would
include:

c� HERIOT-WATT UNIVERSITY 2005

6.3. BUILDING APPLICATIONS 95

Name of the object;

Colour;

Caption attached to object

Height/width

Font used;

Position of object within the form;

Border style.

Properties are changed by highlighting the object and pressing function key F4.
This opens up the Properties window from which changes can be made.

� Coding stage: code is written for each object and when the main program is run
each event will become part of the overall effect. Example events would include:

Clicking a command button;

Loading a form;

Clearing the contents of a text box;

Ending a program.

When Visual Basic is started, Form1 shows by default.

You will see exemplar programs that make use of the following Visual Basic constructs
later in this topic and others.

6.3.4 Input Methods

1 InputBox function

A program may ask for user input during its execution. This can be accomplished using
the InputBox function, which by default allows text entry.

The full syntax for the InputBox function is:

 ��	�.�� ,"��
��,7 ,)����,7 ����7 ����

"��
��: is the displayed message

)����: is the optional text that will appear in the title bar

����7����: coordinates for positioning the InputBox on the screen.

Note that in Visual Basic, the screen is measured in Twips (Twentieth of a point). A
point is a traditional measure used in printing which measures approximately 1/72nd of
an inch or 1/28th cm.

For example a program may require the user to enter a name. The format is:

6�
� � ��	�.���,"����� ����� � ��
�,7�

The user then complies with the request to enter a name.

Should a numerical value be required by the program then the input format is identical
and the text input converted to numeric using the VAL function

6	
���� � E��� ��	�.���,"����� ����� � ���	�,7,6	
��� ���#��
,7 7�+7�+��

c� HERIOT-WATT UNIVERSITY 2005

96 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

In this case the value ����� is input to the program, a caption appears in the title bar
and the InputBox appears at coordinates 50, 50

In most cases only the prompt is used.

Note that if a string contained IJ+�8I.>(then the E�� function would return the value
7902 and ignore the other characters.

2 Use of the Text Box

The main advantage of a text box is that a user can type in much more information
during the execution of a program. Since text boxes can hold large amounts of text it is
best that they are created using a vertical scroll bar.

By highlighting the text box and pressing function key F4 the properties window opens.
From this window, the options E������� ������ ��� and >	������� �)�	� are set.

If numeric values have to be input then, like InputBox, the E�� function is used:

6	
���� � E���)����
�����

Note: E�� is not required if the variable (Number1 and Number2 in the example above)
is declared to be numeric type. This is the preferred method.

c� HERIOT-WATT UNIVERSITY 2005

6.3. BUILDING APPLICATIONS 97

Exercise 1

Open a new Visual Basic project and experiment with adding buttons and text boxes to
the form from the toolbox window. Use the properties window to try-out various settings
and captions for the buttons and settings for the text box and form.

Exercise 2

Open a new Visual Basic project and produce the following form that shows text boxes,
labels and buttons. Use the properties window to create captions for the objects (labels
and buttons are in bold).

6.3.5 Output Methods

1 The MsgBox

The >�#.�� function is useful in situations where the user requires, for example
confirmation of an action. In its simplest form the format of the function is:

>�#.�� ,)�� ���	� ������� $�� $����� ��� ��K	���� ���#�,

The output screen would look like:

The full format of the >�#.�� statement is:

>�#.�� ,"��
��,7 .	�����7 ,)����,

c� HERIOT-WATT UNIVERSITY 2005

98 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

"��
��: is the message to be displayed in the MsgBox

.	�����: is a numeric expression that specifies which buttons to display, with or without
icons. The values are 0 (default), 1, 2, 3, 4, 5, 16, 32, 48 and 64.

)����: The string message displayed in the title bar.

Exercise 3

Experiment with MsgBox button values and create your own messages.

2 The Print command

The print statement is probably the most used output command since it can be used on
its own or in combination with other objects and functions.

Used on its own the print statement with no explicit destination will produce output to the
current window which, in most cases, is the Visual Basic form.

For example, if X = 5 and Y = 7 the following statement will output a text string and value
to the form:

"���� ,)�� �	
 �� ��� �$� ��������� 8 ��� < �� ,3 8 5 <

If the form is populated with many objects it may be difficult to see the above output.

It is much better, therefore if the output is directed to a specified window such as a
MessageBox or PictureBox. Although the latter object is meant for graphics it is also
ideal for the output of lists of text. Using a PictureBox the previous print statement would
become:

"���	��.��
"���� ,)�� �	
 �� ��� �$� ��������� 8 ��� < �� ,3 8 5 <

Usually the term PictureBox is changed to PicBox, PicOutput, PicDisplay, Picture1 or
whatever name is suitable for the output.

Exercise 4

Create a new project and place a command button and PictureBox on the form. Rename
the PictureBox as PicDisplay (F4 then change property ’Name’).

Double-click on the command button and enter the following code. The first and last
lines are present by default so they can be ignored when entering the text.

"������ %	� &�

�����&���'��

(�
 �	
���� *� ���#��7 �	
���� *� ���#��7 �	
���� *� ���#��

(�
 %	
 *� ���#��

�	
���� � E��� ��	�.���,"����� ����� � ���	�,��

�	
���� � E��� ��	�.���,"����� ����� � ���	�,��

�	
���� � E��� ��	�.���,"����� ����� � ���	�,��

%	
 � �	
���� 5 �	
���� 5 �	
����

"��(������
"����

"��(������
"���� ,L	��	� 	���# ��

��,

"��(������
"���� �	
����7 �	
����7 �	
����7 %	

"��(������
"����

"��(������
"����,L	��	� 	���# ��
�:������,

c� HERIOT-WATT UNIVERSITY 2005

6.3. BUILDING APPLICATIONS 99

"��(������
"���� �	
����3 �	
����3 �	
����3 %	

"��(������
"����

��� %	�

Run the program using your own values of number1, number2 and number3. Your output
should look like the following:

Find out what the output would be if the Val function is removed from the ��	�.��

statement.

Use of TAB() and SPC()

Two valuable print functions are TAB() and SPC() that allow for more formal results.

)*.�M� will begin output ’6’ units from the left margin

%"&�M� will output ’6’ units from the previous output.

Exercise 5

Modify the previous code as follows and run the program:

"��(������
"����

"��(������
"����)�����3 ,�	
����,3)������3 ,�	
����,3)����M�3 ,�	
����,3)����4�3

,%	
,

"��(������
"����

"��(������
"���� %�����3 �	
����3 %���J�3 �	
����3 %���J�3 �	
����3 %���I�3 %	

c� HERIOT-WATT UNIVERSITY 2005

100 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

This time you end up with the output that should look like the following:

You will learn more about formatting values later.

6.4 Program Structure

A typical Visual Basic program takes the form shown in Code 6.1

L����� ��������

!A������ ����

!"	���� �� A����� ��������� �������� ����

��

"������ %	� �
�&���'�&���'��

�������� �����������

!��� ��������� 	��� �� ��� ���#��

�������� �����������

!��� ��������� 	��� �� ��� ���#��

!
��� ����� �� ��� ���#��

 6"H) "C*%�

!���� �� ���� ���
 '�������7 ����7 7
�	�� ���

&*-&H-*) L6

!������� ��� ���� �� #��� 	� ��� ���	��� $� $���

c� HERIOT-WATT UNIVERSITY 2005

6.4. PROGRAM STRUCTURE 101

LH)"H)

!���� ���	��� �� � $����$7 �������7 ����7 ���' ���

��� �	�

��

%	� ������	�����

!"�����	�� ��� �	������ �����������

��� %	�

Code 6.1

The program area contains the following:

A general area: this area is public and variables declared here will be ’seen’ by all parts
of the program. More on this will be discussed later under the term scope.

A sub procedure cmd�click(): this contains the main program code that will be initiated
in the event of a mouse click, for example. Within this code there are further declarations
local to the sub procedure. The declarations are:

Constants: any fixed values which will stay constant throughout the program are
declared here;

Variables: variables other than global variables that are going to be used in the program
are declared here.

Sub procedures: any subprocedures required by the program are declared after the
main sub procedure. These are described more fully later on.

Functions: - any functions the program will use are also declared here. These are
described more fully later on.

The input may be from a variety of devices, not just the keyboard. A disk is an input
device when the computer reads data (including programs) from it. The program may
also receive data internally during program execution.

The calculation is the heart of the program. The input data is transformed to the output
data. This, in short, is all that a computer does.

The output phase is less straightforward! There is no screen output in Visual Basic, only
windows called forms. Output can also be directed to a file, printer or disk.

You will see example output methods in the program exemplars.

6.4.1 Example program

Suppose, for example that you were going to write a program to calculate the area of a
rectangle, where the user will input the dimensions and the program will return the area.
The program will take the general form as shown in Code 6.2.

c� HERIOT-WATT UNIVERSITY 2005

102 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

L����� ��������

��

"������ %	� �
�(�������&���'��

(�
 -��#�� *� ���#��

(�
 1���� *� ���#��

(�
 *��� *� ���#��

-��#�� � E���-�#��
)���� ! ��	� ���#��

1���� � E���1���
)���� ! ��	� $����

*��� � -��#�� N 1���� !&���	���� ����

*�
)��� � %��O�*���� !L	��	� ���	��

��� %	�

Code 6.2

This program uses text boxes to input and output the data.

1. In the program the variables Length, Width and Area are declared using the (�

statement (see later)

2. Values of Length and Width are input via text boxes. The Visual Basic function Val
changes text into numeric values.

3. The area is calculated

4. Result output to a text box. The function Str$ converts the numerical value back
to a string value to be recognised by the text box.

Figure 6.3 shows a program run:

c� HERIOT-WATT UNIVERSITY 2005

6.5. DATA TYPES 103

Figure 6.3:

You can see that the form contains 3 labels and 3 text boxes for the input and output of
data and a control button.

6.5 Data types

Visual basic has a number of in-built data types, the significant ones for this topic being
integer, single (real), boolean and string.

These are summarised with others in Table 6.2

c� HERIOT-WATT UNIVERSITY 2005

104 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Table 6.2:

Data Type Optional Suffix Description

 ���#�� % These are whole numbers, positive or negative,
without a decimal point. The range depends on
the machine but if 16 bits long the range is
-32,768 to +32,767.

-��# �����#��� & Extended range of integer from -2,147,483,648 to
+2,147,483,647

%��#�� ������ ! These are floating point numbers, e.g. 3.33333.
When 32 bits long their range is �3.4e �38, and
referred to as single-precision.

(�	��� ������ # Double-precision floating point numbers within
the range �1.7e �308.

%����# $ Fixed length up to 65,400 characters Variable
length up to 2 billion characters.

������� This data type can represent two values: true and
false.

������� Any numeric value up to the range of a
double-precision number or any character text.

Note that:

1. Although the range of floating point numbers is huge, they are not all that accurate
- often not much more than 8 - 16 digits (depends on the machine and compiler).
The rest of the number you may see on the screen is an approximation. For
accuracy you need to use integers.

2. The data type ’variant’ is the default mode in Visual Basic and will be discussed
later in the topic. It should not normally be used.

Identifying data types

On the Web is a interactivity. You should now complete this task.

6.6 Visual Basic Nomenclature

An important aspect of any language is the rules for naming the objects such as
constants, variables, subprocedures and functions.

There are five rules in Visual Basic which prescribe valid variable names. All Visual
Basic variable names:

1. must begin with a letter

2. must contain no spaces

3. must only consist of letters or digits with no embedded periods or other punctuation

c� HERIOT-WATT UNIVERSITY 2005

6.6. VISUAL BASIC NOMENCLATURE 105

marks except the underscore character

4. can be no longer than 255 characters

5. cannot use Visual Basic reserved words (see Table 6.5).

The variable names shown in Table 6.3 are valid:

Table 6.3:

temp1 velocity unit1
pay�period fred day�month�year

The variable names shown in Table 6.4 are not valid. Why?

Table 6.4:

40th�birthday @discount %�rate

constant bad-variable string

In addition, a number of keywords are reserved in Visual Basic for use as commands.
Some of these keywords are listed in Table 6.5 and must not be used as variable
names.

Table 6.5:

��
 ���� ��	� ����� ��

�	� �	������ $���� $��� �������

����� ����#�� ��� �����# ������

���� �	���� ������ ���#��
 ���

������	�� ������� 	���� ����� ��

�� �����# �� ����� ���

A more complete list of keywords can be found in any good Visual Basic manual.

Sentence completion - variables

On the Web is a interactivity. You should now complete this task.

6.6.1 Review Questions

Q6: Which one of the following variable names would not be allowed in Visual Basic?

a) Hello
b) Number�1
c) 17.5%Vat
d) SCHOLAR

Q7: The choice of a variable name in programming is very important because (choose
one):

a) It is easier for programmers to locate and fix errors
b) It makes the programs more efficient
c) Meaningful variable names make the program more reliable
d) All of the above

c� HERIOT-WATT UNIVERSITY 2005

106 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Q8: A program is written to input a person’s age and calculate how old they will be in
10 years time. Which of the following data types would be required in the program to
hold the person’s age?

a) String
b) Real
c) Boolean
d) Integer

Q9: A program is designed to generate prime numbers up to the maximum value
possible with precision. The results are stored in a variable called prime. In order to
perform the calculation the variable prime would need to be declared as:

a) Integer
b) Real (double)
c) Integer (long)
d) Real(single)

6.7 Declaring Variables

Within Visual Basic variables are used to represent and identify values within a program.
The values are held in temporary storage locations in the computers memory.

Each memory location is identified by a unique variable name, and the value of its
contents can change during the execution of a program.

Once the program has ended variables will be reset; all numeric values become zero
and strings become empty.

For this reason it is important that all variables are assigned initial values before a
program run.

To use a variable in Visual Basic, three quantities must be specified:

1. Name of the variable

2. Type of variable

3. Value of the variable

Variables are declared using the (�
 statement which allocates temporary storage to
them. It is usual to use (�
 statements before any other code so that total memory can
be allocated at run time.

c� HERIOT-WATT UNIVERSITY 2005

6.7. DECLARING VARIABLES 107

Examples of Dim statements are:

Dim binFound As boolean
Dim intMaximum As integer

Dim dblPrecision As double
Dim strMyname As string

Notice that each variable name has a prefix attached. This is a Visual Basic construct
that allows the programmer to differentiate between the various types of data objects.
Although not essential It is good programming practice to do so and also to use
meaningful variable names so that values can be easily identified in programs.

The main data type prefixes are summarised in Table 6.6:

Table 6.6:

Data type Prefix
Boolean bin
Integer int
Long lng

String str

Single sng

Double dbl
Constant con

Variable assignments

Which of the following variable assignments match?

a) intValue = 89

b) sNumber1 = 3.1417

c) strName = "Hello"

d) iNumber2 = 25.683

e) strString = 65.310

f) lonBig�Number = 5.6432e10

g) bFound = false

6.7.1 Implicit and Explicit declaration

Visual Basic offers two levels of variable type declarations:

1. Implicit declaration

2. Explicit declaration

Implicit declaration (to be avoided)

In implicit declaration, if the ’dim’ statement is used on its own without assigning type
to a variable or a variable is assigned a value, then Visual Basic will assign the data type

c� HERIOT-WATT UNIVERSITY 2005

108 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

variant. This is the default setting that Visual Basic will assign variables if not declared
as some other type.

Visual Basic does not force you to declare data types but it is much better if you do.

For example consider the following lines of code as shown:

"������ %	� 2��
�-�����

(�
 >�)���

>�)��� � ,%�
��� ���#��
,

2����6	
��� � �

%�����6	
��� � �+

)���� � 2����6	
��� 5 %�����6	
���

��� %	�

FirstNumber, SecondNumber and Total have not been declared but Visual Basic has
assigned them data types ’on the fly’ the first time they encountered. Although MyText
has been declared, it has no type. All variables have therefore been assigned the type
variant.

But beware! If a variant variable is mis-spelled later in the program then a new variable
will be created by Visual Basic. This is a common error and can create program bugs
that are difficult to find.

Explicit declaration (to be encouraged)

In explicit declaration each variable is declared unambiguously using the (�

statement.

It is recommended that this option be used at all times. This helps to prevent errors
and allows the computer to work more efficiently. If Visual Basic knows the data type
through declarations then the requisite amount of memory can be assigned thus making
memory management more efficient. Programs with defined variables also run around
3 times faster than those with variant data types.

Visual Basic can be forced to make variable declaration the default setting. By clicking
on Tools then Options a window like Figure 6.4 will open. Checking the Require Variable
Declaration box will ensure Visual Basic starts up in explicit declaration mode.

Note: Visual basic.NET does not support the type variant.

c� HERIOT-WATT UNIVERSITY 2005

6.7. DECLARING VARIABLES 109

Figure 6.4:

The program of Code 6.2 can now be re-written as:

L����� ��������

"������ %	� 2��
�������

(�
 2����6	
��� *� ����#��

(�
 %�����6	
��� *� ����#��

(�
)���� *� ����#��

(�
 >�)��� *� �����#

2����6	
��� � �

%�����6	
��� � �+

)���� � 2����6	
��� 5 %�����6	
���

>�)��� � ,%�
��� "��#��
,

��� %	�

Code 6.3

c� HERIOT-WATT UNIVERSITY 2005

110 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

6.8 Declaring constants

A constant is a quantity that is allocated by the user, usually at the start of a program,
although they can be defined anywhere in the program. A constant retains the same
value throughout program execution and cannot be altered.

Constants are declared using the const statement to create string or numeric values

Examples of constant declarations are:

&���� �"� *� ���#�� � �
����J�

&���� �*��#���� *� ���#�� � M
+�����

&���� �6�
� *� �����#� ,)��� ��
� ��
�,

Some programmers like to express constants all in capital letters to differentiate them
from variables. This is an individual preference. This makes no difference to the program
whatsoever; its only purpose is to bring to your attention the fact that this particular name
is being used for a constant and not a variable.

6.8.1 Example program 1 - Calculating the circumference of a circle

Problem: Write a program that calculates the circumference of a circle, when supplied
with the radius. The value of PI is defined as a constant.

Solution: A typical solution to the problem is shown in Code 6.4. The circumference is
calculated using the formula: 2 � PI � r.

Note. It is good programming practice to include comments in every program. The
information allows better readability of the program and also breaks the code listing into
meaningful chunks.

The comment symbol is the single quote (’). Visual Basic ignores all text that comes
after the quote. Comments can also be embedded within the lines of code.

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 ������

!�+�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 ���
��� ��� 	��� �� ����� � ���	� ��� ��� ����	�

!�� � ������
 � ���� 	��� ��� ���
	��9 �N" N����	� ��

!����	���� ��� ����	
�������

&���� " *� %��#�� � �
����J !(������ �������� " ��� ����#�� ���	�

(�
 ����	� *� %��#��

(�
 ����	
������� *� %��#��

c� HERIOT-WATT UNIVERSITY 2005

6.8. DECLARING CONSTANTS 111

����	� � ��	�.���,"����� ����� ��� ����	� �� ��� ������,�

����	
������� � � N " N ����	�

"���� ,)�� ����	
������� �� ������ $��� ����	� 9,3

����	�3 , ��9 ,3 ����	
�������

��� %	�

This file (Circle.txt), can be downloaded from the course web site.

Code 6.4

In this program the input and output commands are controlled using the InputBox
function.

The program output Figure 6.5 and Figure 6.6 are shown below:

Figure 6.5:

Figure 6.6:

c� HERIOT-WATT UNIVERSITY 2005

112 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Note that this method uses multiple windows. Input is via an inputBox and output is on
the form itself, using the print command.

6.8.2 Example program 2 - Use of a boolean variable

Problem: A program is required to display whether a number entered at the keyboard is
greater than or equal to zero. The program will prompt the user to enter a number. It will
then display a message, together with the value true or false, depending on the value of
the number entered.

Solution:

The algorithm is shown below:

�
 ���	�
����#� �� ����� �	
���

�
 ���� ��� �	
��� ����� �� �� ��� '�������

�
 ��� ��� ������� �������� �� ��	� �� �����

��������# 	��� �	
��� D� �� �	
��� B +

The full Visual Basic code for this program is shown in Code 6.5:

"������ %	� �
�/	��&���'��

!�+�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

(�
 �	
��� *� ���#��

(�
 ���	�� *� .������

!)��� �� � ���#��
 ���� $��� ���
�� ��� 	��� ��� � �	
���

! � $��� ���� ����' $������ ��� �	
��� �� ���� ���� �� �K	��

! �� ���� �� #������ ���� +

! * ������� �������� $��� ���� ��� ���	��
 *
����#� �����#

! ��	� �� ����� $��� �� ������� �� ��� ������ �� ��� $������ �� ��

! #������ ���� ����

!%���� ��
��� ���#��

�	
��� � ��	�.���,"����� ����� � �	
���,�

���	�� � �	
��� D� +

"���� �	
���3 ,#������ ���� �� �K	�� �� ���� � ,3 ���	��

��� %	�

Code 6.5

In this program the InputBox function is used to input the data, as before. The output is
shown in Figure 6.7:

c� HERIOT-WATT UNIVERSITY 2005

6.8. DECLARING CONSTANTS 113

Figure 6.7:

Boolean values are easy to use, and when used, they can often make a program more
readable. They are often tested to control the flow of execution of a program.

When defining a list of variables with the same type specifier, the variables can all be
defined on the same line as the type specifier or separate type specifiers can be used
for each variable. For example:

(�
 �	
���� *� ����#��7 �	
���� *� ����#��7 �	
 *� ����#��

is equivalent to

(�
 �	
���� *� ����#��

(�
 �	
���� *� ����#��

(�
 �	
 *� ����#��

However the statement:

(�
 �	
����7 �	
����7 �	
 *� ����#��

will assign sum as integer with number1 and number2 being assigned variant.

6.8.3 String variables and functions

A string is simply a collection of characters that are defined within quotes. The following
are examples of string values:

"coffee"

"This program is not working"

"xyz"

"February 16,2004"

"Visual Basic 6"

c� HERIOT-WATT UNIVERSITY 2005

114 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

"Shrove Tuesday is pancake day"

"51"

The quotation marks are very important since they tell Visual Basic that the enclosed
characters are a string. Characters not enclosed in quotation marks are considered to
be a numeric variable or some other part of the Visual Basic language.

Note. The string value "51" does not equal the value 51. You might think that it’s a value
for an integer, but it’s not. However there is a Visual Basic function, VAL, that will convert
string variables to values. The following statement:

6	
������E��	� � E*-�,��,�

will allow the variable 6	
������E��	� to be assigned the integer value ��.

Of course the reverse is also true. Given a value, it can be converted into a string using
the Visual Basic %)/O function. The following statement:

%����#E��	� � %)/O����

will allow the variable %����#E��	� to be assigned the string ,��,

Two other useful functions are &C/O and *%&. The following examples show how they
are used:

-�����E��	� � *%&�,*,�

will assign the value 65 to -�����E��	�. This is the ASCII code for the letter "A".

-�����O � &C/O�MM�

will assign the string "B" to -�����O since the ASCII code for "B" is 66.

Table 6.7 summarises the string functions:

Table 6.7:

Function Usage Examples

E*- Converts string to value � � E���,MM,�

%)/O Converts value to string �O � %��O�II�

*%& Converts string to ASCII value � � *%&�,(,�

&C/O Converts ASCII value to string �O � &C/O�M4�

What are the results of each example?

6.8.4 Concatenation

Concatenation is simply joining string variables together to make longer strings.

The operator is the ampersand symbol (&). When two or more strings are combined
the second strings are added directly to the end of the preceding string. The result is a
longer string containing the full contents of both source strings.

The following example shows concatenation structure:

6�$%����# � %����#L�� P %����#)$� P %����#)����

Here 6�$%����# represents the variable that contains the result of the concatenation

c� HERIOT-WATT UNIVERSITY 2005

6.8. DECLARING CONSTANTS 115

operation. %����#L��, %����#)$�, and %����#)���� all represent string variables.

Note that the ampersand must be preceded and followed by a space.

Example of concatenation

Example 1

The statement:

"���� ,>��, P ,�������,

would produce the string ,>���������,

Example 2

%����#� � ,)��� �� ,

%����#� � ,���,

%����#� � ,���,

%����#� � ,��,

%����#� � ,������,

"���� %����#� P %����#� P %����#� P %����#� P %����#� will produce as output:

,)��� �� �������������,

Practice in using simple variables

Now let us put this to some practical use by having a look at an example program.

Example : Adding values

Problem:

Describe the operation and the output of the following program.

(�
 �	
���� *� ���#��

(�
 �	
���� *� ���#��

(�
 �	
 *� ���#��

�	
���� � + Q���������� ��� ��������� �� ��
� ���	� R

�	
���� � +

�	
���� � ��	�.���,A���
� � �	
���,�

�	
���� � ��	�.���,A���
� � ������ �	
���,�

"����

�	
 � �	
���� 5 �	
����

"�����,)�� �	
 �� 9,3 �	
����3, ��� ,3 �	
����3 ,��9 ,3�	
�

This file (add.txt), can be downloaded from the course web site.

Code 6.6

c� HERIOT-WATT UNIVERSITY 2005

116 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Solution:

The program defines 3 integer variables. Values are assigned to two of them. These
two variables are then added together with the result being stored in the third variable.
The result of the sum is then displayed.

Given number1 = 32 and number2 = 27, the output of the program is:

)�� �	
 �� 9 �� ��� �I �� 9 �J

In this program the variables ���	��, ���	�� and �	
 are declared to be of data type
integer. This declaration statement must occur before the variables are used in the
program since it instructs the compiler to allocate sufficient memory storage for each
of the data items on the list. This is important. You cannot use a variable unless you
have declared it first. Also remember that variables may not be initialised when they are
declared. They may not be set to zero, but have random numbers in them. In the case
of this program you either gave the variables specific values, by reading values from the
keyboard or you gave �	
 a value which was calculated by the program. In either case
the variable had been given a value before it was used.

Q10: What is wrong with this Visual Basic program?

!���#��
 �	������

(�
 �	
���� *� ���#��

(�
 ���	�� *� ����#��

�	
���� � ��	�.���,"����� ����� ��� ����� �	
���,�

�	
���� � ��	�.���,������ ����� ��� ������ �	
���,�

���	�� � �	
���� : �	
����

"�����,6	
��� � ��'� �$�� �	
��� � � ,3�	
�

Calculating minutes

20 min

�

Æ

�

�

Learning Objective

Be able to use get input from the user.

Be able to use arithmetic operators.

Be able to display output on the screen.

Write a program which prompts the user to enter a number of days, hours and minutes.
The program will then calculate and display this as a total number of minutes.

c� HERIOT-WATT UNIVERSITY 2005

6.9. VARIABLES AND SCOPE 117

6.9 Variables and scope

Variables have another important characteristic called scope. This determines which
parts of a program are able to ’see’ the variable and change its value.

The scope of a variable is determined not only by the type of declaration but also the
declaration’s location. For instance, the Dim keyword assumes different meanings in
different parts of a form’s code.

In Visual Basic variables can be declared as shown in Figure 6.8:

Figure 6.8:

1. If a variable is declared in the general declarations section with the (�
 statement
then it is Public or Global to the entire program.

2. If it is declared as Public in the general declarations section then it is Global to the
entire program.

3. If it is declared Private in the general declarations section then it is Global to the
entire form and modules.

4. If declared within the sub procedure then the variable becomes Local to that sub
procedure and will not be recognised elsewhere.

Consider the following program in Code 6.7:

L����� ��������

!"��#��
 �� ��
�������� #����� ��� ����� ���������

"	����)���E������� *� ���#��

(�
)���%����# *� %����#

"������ %	� ����	��>����&���'��

)���E������� � ��

c� HERIOT-WATT UNIVERSITY 2005

118 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

)���%����# � ,C���� �,

"���� , �
��� ���#��
)����������� � ,3)���E�������

"���� , �
��� ���#��
)���%����# �)���%����#,

��� %	�

"������ %	� ����	��-�����&���'��

(�
)���E������� *� ���#��

(�
)���%����# *� %����#

"����

"���� ,&��� � #����)���E������� � ,3)���E�������

"���� ,&��� � #����)���%����# � ,3)���%����#

"����

)���E������� � ��+

)���%����# � ,C���� �,

"���� ,&��� � #����)���E������� � ,3)���E�������

"���� ,&��� � #����)���%����# � ,3)���%����#

��� %	�

This file (Scope.txt), can be downloaded from the course web site.

Code 6.7

)���E������� and)���%����# are declared "	����.

They are given values in sub procedure ����	��>����&���'��

They are re-declared in sub procedure ����	��-�����&���'�� and assigned new
values.

Figure 6.9 shows the program output. The program is called twice by activating the two
buttons.

Figure 6.9:

Public gives the original values(that can change).

c� HERIOT-WATT UNIVERSITY 2005

6.9. VARIABLES AND SCOPE 119

In call 1 local procedure resets the variables to 0 (since they have been re-declared).

Call 2 produces the new values from the local procedure.

Therefore, local variables always win!

Note: Extensive use of global variables is bad practice; the use of global variables should
be kept to a minimum since their values can change from anywhere within a program as
you have just seen.

Local variables on the other hand offer the following advantages:

1. side-effects caused by a subprogram altering the value of a variable used
elsewhere in the program are greatly reduced

2. debugging is easier since access to variables is localised and so tracking errors
can be faster

3. the transfer of procedures and functions from one program to another is simplified.

Sentence completion - global and local variables

On the Web is a interactivity. You should now complete this task.

6.9.1 Review Questions

Q11: In high level language code a variable declared outside a procedure is (choose
one):

a) Local
b) Constant
c) Global
d) Functional

Q12: Which one of the following describes the relationship between main memory and
program variables?

a) Name of variable identifies memory location
b) Data type defines how much memory is needed
c) Values of variables are held in main memory
d) All three statements above

Q13: Which one of the following describes a local variable?

a) Can be accessed anywhere in the program
b) They are hidden from other procedures and functions
c) Their values can easily be altered by mistake
d) The use of local variables is discouraged

c� HERIOT-WATT UNIVERSITY 2005

120 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Q14: The scope of a variable is an important aspect in programming. Scope is best
described as:

a) The range of values the variable can cope with
b) The amount of memory required by the variable
c) The extent to which the variable can be ’seen’ by the rest of the program
d) The number of times the variable can be used in the program

Q15: Which one of the following describes a boolean variable?

a) It holds a numerical value
b) It cannot be used in expressions
c) It is only used in looping structures
d) It can have only the values true or false

6.10 Operators

Assignment operator

The assignment operator in Visual basic is the equals (=) sign. The general form for the
assignment operator is:

�������� � ����������

This statement says make left hand side equal to the right hand side. It makes the
variable take on the same value as expression. You have already seen this used in
previous programs.

For example:

����	
������� � � N " N �

where the result of the expression �N " N � is assigned to the variable ����	
�������

Arithmetic operators

Table 6.8 list the main arithmetic operators in Visual basic:

Table 6.8:

Arithmetic operators Example Result

+ (add) 16 + 14 30

- (subtract) 27 - 9 18

/ (real division) 27.83 / 3 9.27

* (multiply) 12.65 * 5 63.23

� (integer division) 16 � 7 2

mod (modulus operator) 25 mod 7 4

^ (raise to the power) 10 ^ 3 1000

It is important to remember that integer division gives you a whole-number answer only
- any remainder is discarded. For example:

c� HERIOT-WATT UNIVERSITY 2005

6.10. OPERATORS 121

5 � 2 gives 2 as the answer;

16 � 5 gives 3 as the answer.

The modulus operator is used for division to obtain the remainder. The expression

�
�� �

produces the remainder when � is divided by �

The
�� operator can be applied to integers and also with ����. For example:

5 mod 2 gives 1

8 mod 3 gives 2.

9 mod 3 gives 0 (zero).

7.1 mod 3.1 gives 1 (numbers rounded down)

10.8 mod 3.6 gives 3 (numbers rounded up)

Make sure you understand why.

6.10.1 Operator precedence

When several operations occur in an expression, each part is evaluated and resolved
in a predetermined order called operator precedence. Parentheses can be used to
override the order of precedence and force some parts of an expression to be evaluated
before other parts. Operations within parentheses are always performed before those
outside. Within parentheses, however, normal operator precedence is maintained.

When multiplication and division occur together in an expression, each operation is
evaluated as it occurs from left to right. Likewise, when addition and subtraction occur
together in an expression, each operation is evaluated in order of appearance from left
to right.

Arithmetic operators are evaluated in the following order of precedence:

Arithmetic operator precedence

Parentheses () 1
Exponentiation (^) 2
Negation (-) 3

Multiplication and division (*, /) 4

Integer division (�) 5

Modulus arithmetic (Mod) 6

Addition and subtraction (+, -) 7

c� HERIOT-WATT UNIVERSITY 2005

122 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Example 1 - Operator precedence: 4 + 5 * 2

Problem: What is the result of 4 + 5 * 2?

Solution: The multiplication is calculated first, then the addition since multiplication has
a higher precedence than addition, e.g.

� 5 � N �

� � 5 �+

� ��

and so 4 + 5 * 2 is equal to 14.

Example 2 - Operator precedence: (4 + 5) * 2

Problem: What is the result of (4 + 5) * 2?

Solution: The expression in the brackets is calculated first, then the multiplication - the
brackets have altered the order of precedence, e.g.

�� 5 �� N �

� �J� N �

� �4

and so (4 + 5) * 2 is equal to 18.

Example 3 - Operator precedence: 3 + (7 - 5)^2 * 4

Problem: What is the result of 3 + (7 - 5)^2 * 4?

Solution: The expression in brackets is evaluated first, then exponentiation, followed by
multiplication then addition, i.e

� 5 �I : ��S� N �

� � 5 �S� N �

� � 5 � N �

� � 5 �M

� �J

and so 3 + (7 - 5)^2 * 4 is equal to 19

Matching operations and results

On the Web is a interactivity. You should now complete this task.

c� HERIOT-WATT UNIVERSITY 2005

6.11. PROGRAMMING CONSTRUCTS 123

6.11 Programming constructs

Structured programming is based on three constructs:

� sequence

� selection

� repetition

6.11.1 Sequence

This is the computer’s basic mode of operation. This is how it’s designed to work. A
computer is designed to carry out an instruction and move automatically onto the next
instruction.

A program is working in sequence when it

� begins at the beginning

� carries out each statement or instruction once and only once

� stops when it’s reached the end

In other words, it misses nothing out (which happens under selection) and it does
nothing more than once (which happens under repetition).

Sequence is the default mode of operation for a program: a program works in sequence
unless it is explicitly told to do otherwise by means of one of the other programming
constructs. Left to itself, it will always carry out a statement and proceed automatically
to the next.

Example of simple sequence

The program examples you have seen so far follow simple sequences.

Try the following activity.

Problem: A program is written to ask the user to enter a number at the keyboard.
The program then doubles it and displays the result on the screen. Code the following
algorithm in Visual Basic and run the program:

�
 ��K	��� � �	
��� ���
 ��� 	���

�
 #�� ��� �	
��� ����� �� �� ��� 	���

�
 ��	��� ��� ���	� �� ��� �	
���

�
 ������� ��� ��$ ���	� �� ��� ������

Sequential control of a program limits the type and range of problems that can be solved.
Sequence is basic and essential, but limited. A program in simple sequence always does
the same sort of thing, and it can’t easily do things more than once.

We want programs that can carry out tests and make decisions. We want programs that
can do things over and over again.

With the use of selection and repetition, the range of problems that can be solved
becomes much larger. This is what we will look at next.

c� HERIOT-WATT UNIVERSITY 2005

124 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

6.11.2 Selection

A fundamental task in any program is the decision of what to do next. Control constructs
enable you to make decisions in your programs to determine when certain parts of the
program will be executed.

In a similar manner to English you can make decisions using the if statement - for
example, if it is raining then I will take my umbrella. These simple decisions can then be
further extended as will be considered in this section.

In this topic you will look at the following control constructs and how to use them to
enable decisions to be made in programs.

� the �� statement

� use of logical operators in decision-making

� the ��

���� statement

� nested �� statements

� multi-way branching with ������

� the ���� statement

6.12 The IF Statement

The general decision making capability in Visual Basic is provided by the �� statement.
The format of this statement is:

�� ��������� ���� �����
���

or

�� ��������� ����

�����
����

��� ��

��
�0��������

����������

���������������

�
�#

"� �#

c� HERIOT-WATT UNIVERSITY 2005

6.12. THE IF STATEMENT 125

The program statement may be a single statement or may be a block of statements.

When the expression is true, the statements following are executed. When the
expression is false, then none of the statements are executed and control passes to
the remainder of the program

Example 1 - Using a simple IF statement

Problem: A program is required to ask the user for a number. If the number entered
by the user has the same value as a value stored in a constant, then the program will
display a suitable response.

The algorithm is shown below:

Solution:

�
 ��K	��� � �	
��� ���
 ��� 	���

�
 #�� �	
��� ����� �� �� ��� '�������

�
 2 ���� �	
��� ����� �� � ��� ���#��
 ���������)C�6

�
 ������� , ��'� JJ�,

�
 ������� ,"��#��
 ���F %� ��	 ���!� ��'� JJ� ,

The full Visual Basic code for this program is as follows:

L����� ��������

"������ %	� �
�����	���&���'��

!���#��
 ��
��� ��)���

!���� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!* ���#��
 �� ���$ � ��
��� ��

���� �����
���

&���� �� *� ���#�� � JJ

(�
 	����� *� ���#��

	����� � ��	�.���,A���
� � �	
���,�

 � 	����� � ��)���

"��(������
"���� , ��'� ,3 ��3 ,�,

��� �

"��(������
"���� ,"��#��
 ���F ,

��� %	�

Code 6.8

In this program input is via an InputBox and output by means of the PictureBox function.
Although a PictureBox is meant for graphics it can deal with text as well and this
somewhat tidier than displaying text on a form.

c� HERIOT-WATT UNIVERSITY 2005

126 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

The PictureBox property is set to the name PicDisplay in the properties window.

Program output is seen in Figure 6.10:

Figure 6.10:

Several examples are given here that use comparison operators and �� constructs within
a program to solve a problem. Try writing the programs for yourself and experiment with
making changes to the code to ensure you understand what is happening.

Example 1 - Calculating the area and circumference of a circle

Problem: Write a program that calculates the area and circumference of a circle. The
calculations should only be performed if the radius is positive (i.e. a valid radius).

Solution: In the previous topic an example was given for calculating the circumference
of a circle using a constant for the value of pi. This example could be modified to use an
if statement to validate the radius i.e

�� ����	� D + ����

�� ����	�������

������� ���	���

Example 2 - Write a program to input numbers from the keyboard and to print them out.
The program terminates when -1 is entered. A suitable message should be output.

���	� �	
���

�� �	
��� D +

�	��	� �	
���

���

���
����� ���#��

�	��	�
����#�

c� HERIOT-WATT UNIVERSITY 2005

6.13. THE IF.. THEN.. ELSE STATEMENT 127

6.13 The If.. Then.. Else Statement

So far we have shown you the use of the if..then statement when there is only one
alternative i.e. if the expression is true then execute a single code fragment. If the
expression is not true, you may want to execute a different code fragment. This is
known as an if statement with two alternatives and the general format becomes:

�� ��������� ����

�����
���� �

����

�����
���� �

��� ��

Again the statements may be single or they can be multiple statements.

��
�0��������

�����������-

���������������

�����������1

�
�# "� �#

If the expression is true, then the code fragment following the then (statements 1) will
be executed. If the expression is false, the statements following the else (statements 2)
will be executed.

Example - Single or double?

Problem: A program is written to prompt the user for a number. If the number entered
by the user has a single digit, then the program will display an appropriate message
telling the user that this is single-digit number. Otherwise it will output the message
"double-digit number"

The algorithm is shown below:

Solution:

�
*�' ��� 	��� �� ���	� �	
��� ���$��� � ��� JJ

�
�� ��� �	
��� B �+

�
������� ,���#�� ��#�� �	
���,

c� HERIOT-WATT UNIVERSITY 2005

128 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

�
����

�
������� ,��	��� ��#�� �	
���,

The full Visual Basic program is seen in Code 6.9

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 ��
���� ��)��������

!���� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� ����� � �	
���

!)�� ���#��
 $��� ���� ��� �	
��� �� ��� �� �� ��

!���� ���� �+ ��� ����� ���
����#� ���� �� �� � ���#��:��#�� �	
���

!L����$��� �� $��� �	��	� ,��	���:����#�� �	
���,

(�
 ����6	
��� *� ���#��

����6	
��� � ��	�.���,"����� ���	� � �	
��� ,�

 � ����6	
��� B �+)���

"��(������
"���� ����6	
���3 ,�� � ���#�� ��#�� �	
���,

����

"��(������
"���� ����6	
���3 , � ���� ��	���:��#�� �	
���,

��� �

��� %	�

"������ %	� ���"��#��
�&���'��

���

��� %	�

This file (IfThen.txt), can be downloaded from the course web site.

Code 6.9

Note that this program has an extra procedure - Sub EndProgram�Click(). You have
probably found that Visual Basic programs do not terminate by default. By adding an
extra button on the form and programming this with ’End’ between the lines of code, this
will terminate the program.

This will be used on all subsequent programs.

Sample output is shown in Figure 6.11.

c� HERIOT-WATT UNIVERSITY 2005

6.13. THE IF.. THEN.. ELSE STATEMENT 129

Figure 6.11:

Further examples

Example 1

Problem: What is the output of the following code?

(�
 6	
���� *� ���#��7 6	
���� *� ���#��

6	
���� � �+

6	
���� � �

�� 6	
���� D 6	
���� ����

"���� ,6	
���� �� ��##���,

����

"���� ,6	
���� �� ��##���,

��� ��

Solution: This piece of code first declares two integer variables, 6	
���� and 6	
����.
6	
���� is assigned a value of 10, and 6	
���� is assigned a value of 5.

The condition for the �� statement is "is 6	
���� greater than 6	
����"? If this is true
then the statement "Number1 is biggest" is displayed. If the condition is false then the
statement "Number2 is biggest" is displayed on the screen.

In this case the condition is true since 6	
���� has a value of 10, which is greater than
the value of 5 that has been assigned to 6	
���� and so the output from this code is

6	
���� �� ��##���

c� HERIOT-WATT UNIVERSITY 2005

130 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Example 2

Problem: What is the output of the following code?

(�
 E��	�� *� ���#��7 E��	�� *� ����#��

E��	�� � �+

E��	�� � +

�� �E��	�� BD +� ��� �E��	�� BD +� ����

"���� ,L��,

����

"���� ,)$�,

��� ��

Solution: This condition for the �� statement uses a logical and. It is testing if E��	�� is
not equal to zero and if E��	�� is not equal to zero. In this case E��	�� is equal to zero
(true) but E��	�� is not (false). Therefore the whole expression is false, and the text Two
would be printed on the screen.

Which is bigger?

30 min

Write a program which prompts a user to type in two numbers - first one, then the other.
The program responds by printing the bigger of the two. Use the code fragments in the
examples above to help you, and make sure that the program has user-friendly prompts
for the input and output.

Even or odd?

30 min
Write a program to test if a user entered number is even or odd.

In this program you will have to use the modulus operator (
��) to calculate the
remainder when the value stored in the variable �	
��� is divided by 2. An even number
has no remainder if divided by 2.

Calculating wages

20 min

Write a program to calculate the commission based wages of a computer salesman. His
basic wage is �50 per week and he is expected to sell at least 10 computers. If he sells
more than 10 computers, he receives an extra �5.50 per computer he sells after the
10th computer.

The basic algorithm could be drawn as shown in Figure 6.12

c� HERIOT-WATT UNIVERSITY 2005

6.13. THE IF.. THEN.. ELSE STATEMENT 131

��������������������

���?�-.

��������	
��������	

�����
����������

���������	

Figure 6.12

Outwith range

When does the following statement evaluate to be TRUE?

��	
��� B +� �� ��	
��� D J�

6.13.1 Comparison Operators

There are two kinds of operators that allow comparison within Visual Basic:

1. Relational

2. Logical

6.13.2 Relational operators

Relational operators are used for testing of conditions. They are used to construct the
’expression’ which is used in the �� statement. The relational operators check whether
two quantities are the same or whether there is a difference between them. Because
of the inexact way floating point numbers are stored in computers you should not use
the equality operator = between two real numbers. Even if two real numbers are printed
to the screen as the same two numbers, this is no guarantee that they are the same
internally.

The only way to test equality between real numbers A and B is to use the following
expression:

 � *.%�* : .� � �
��� ����������)���

The function *.% returns the absolute value of any number.*.%��
�� gives 5, *.%�:���
gives 43

Depending upon how accurate real numbers are held on the computer small difference
is usually of the order 0.0000001.

c� HERIOT-WATT UNIVERSITY 2005

132 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

The relational operators are summarised in Table 6.9. These operations can be
performed between most types of object, but they will be used most often to compare
two integer values or two characters.

Table 6.9: Relational Operators

Symbol Example Meaning
� � � � � equal to �

� � � � � less than �

�� � �� � � less than or equal to �

� � � � � greater than �

�� � �� � � greater than or equal to �

�� � �� � � not equal to �

Example 1 - Using a Relational Operator

Problem: How can a comparison be made between two variables, 6	
� and 6	
� to find
out if 6	
� is greater than or equal to 6	
�?

Solution: The comparison can be made using the relational operator ��, e.g.

6	
� �� 6	
�

This comparison could be reversed to check if 6	
� is less than 6	
�, e.g.

6	
� �� 6	
�

Example 2 - Using a relational operator in an �� statement

Problem: Construct an if statement that will display a message to the screen if two
variables, E��� and E���, are equal.

Solution: A typical solution is shown here.

(�
 E��� *� ���#��7 E��� *� ����#��

�� E��� � E��� ����

"���� ,E��� ��� E��� ��� �K	��,

��� ��

Sentence completion - relational operators

On the Web is a interactivity. You should now complete this task.

6.13.3 Logical Operators

Logical operators test conditions as either being true or false. In computer programming
they are referred to as Boolean operators, named after George Boole, a mathematician
and logician.

c� HERIOT-WATT UNIVERSITY 2005

6.13. THE IF.. THEN.. ELSE STATEMENT 133

6.13.4 Logical AND

Logical ��� means that an expression is true only if both the part before the ’���’ and
the part after the ’���’ are true. Both must evaluate to true . So...

�� ��	
��� � +� ��� ��	
��� � �+� ����

the expression will always evaluate to �����. Why? Because a number cannot be less
than zero and greater than 10 at the same time, and both must be ��	� for the ’���’
statement to produce a ��	� result.

Use of the logical ’���’ operator can be seen in the expression below:

�� �E��� � M� ��� �E�$� � M� ����

�����
��� �

����

�����
��� �

��� ��

This code means that when both E��� and E�$� are equal to 6 then �����
��� � is
executed. If either or both of the conditions is ����� then �����
��� � is ignored and
execution passes onto �����
��� �.

Example 1 - Passwords

Problem: A program is written which asks the user to enter a password and to confirm
it by entering it again. If both words are equal to a program constant then the program
will display a suitable comment. If not, or only one instance of the password is entered
the user will be informed.

The algorithm is shown below:

Solution:

�
 ��K	��� ��� ����$��� ���
 ��� 	���

�
 ��K	��� ��� ����$��� ���
 ��� 	���

�
 �� ���� ����� ����$��� � ��������� ��� ���� ������ ����$��� � ��������� ����

�
 ������� ��� $��� ������� ���� ��
��

�
 ����

M
 ������� ��� �$� $���� ��� ���� ���� ��� ���������,

The full Visual Basic code for this program is as follows:

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 	���# ��� *6(��������

!���� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� ����� �$� $����

c� HERIOT-WATT UNIVERSITY 2005

134 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

!��� ��
���� ���
 �� � �����# ��������

(�
 1���� *� %����#

(�
 1���� *� %����#

&���� ���� *� %����# � ,(�������,

1���� � ��	�.���,"����� ���	� ����$��� ,�

1���� � ��	�.���,"���$��� �#���7 ������,�

 � �1���� � ���� *�� 1���� � �����)���

"��(������
"���� ,.��� $���� ,3 ����3 , ��� ���������,

����

"��(������
"���� 1����3 , ��� ,3 1����3 , ��� ��� ���������,

��� �

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (Password.txt), can be downloaded from the course web
site.

Code 6.10

Program output is seen in Figure 6.13

Figure 6.13:

Notice from the third entry that the input is case sensitive.

c� HERIOT-WATT UNIVERSITY 2005

6.13. THE IF.. THEN.. ELSE STATEMENT 135

How could this be resolved?

Using the logical ��� operator in an �� statement

Construct an �� statement that displays a message if both the variables, �	
���� and
�	
���� are greater than 10.

Validating numeric input and program testing

20 min

Use this fragments of code you have just seen in this section to help you write a program
which will accept a value from the keyboard and print ‘yes’ if it is positive and even. Test
your program with positive and negative numbers, odd and even numbers and make
sure it passes all the tests. Make a tabulated list of the numbers you use and the
results the program gives for each input. Use both positive and negative numbers, not
neglecting zero.

6.13.5 The Logical OR (Inclusive)

If either the expression before the �� or after the �� is ��	�, then the whole expression
is true. This also means that if both the expressions are true, the �� expression will
evaluate to ��	�.. So or means ‘either one, or the other or both’. Hence the term
inclusive.

Use of the logical OR operator is shown below:

�� �E��� � M� �� �E�$� � M� ����

�����
��� �

����

�����
��� �

��� ��

This code means that when either E��� or E�$� is equal to 6 then �����
��� � is
executed. If both of the conditions are false then �����
��� � is ignored and execution
passes onto �����
��� �.

Example 1 - Wash the car?

Problem: A program is written to prompt the user to enter two conditions - a temperature
and a weather forecast. If either or both of the conditions are met then the program will
display a suitable message to go and wash the car. If no conditions are met the user
will be informed that washing the car is not a good idea. The conditions are compared
to program constants.

The algorithm is shown below:

Solution:

�
 ��K	��� � ��
�����	�� ���
 ��� 	���

�
 ��K	��� $������ ��������� ���
 	���

�
 �� ���� ����� ���	� D� ��� �� ���� ������ ���	� � ,%	���,� ����

�
 ������� ,1��� ��� ���F,

�
 ����

M
 ������� ,6�� � #��� ����F,

c� HERIOT-WATT UNIVERSITY 2005

136 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

The Visual Basic code for this program is shown in Code 6.11

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 	���# ��� L/ ��������

!���� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� ����� � ���	� ���

!� ���������

(�
 �)�
� *� ���#��

(�
 $������ *� %����#

�)�
� � ��	�.���,"����� ���	� �����!� ��
�����	�� ,�

$������ � ��	�.���,"����� ���	� %	��� �� /����,�

 � ��)�
� D� �� L� $������ � ,%	���,�)���

"��(������
"���� �)�
�3 ,��# ,3 , ��� ,3 $������3 ,F 1��� ��� ���,

����

"��(������
"���� �)�
�3 ,��# ,3 , ��� ,3 $������3 ,F 6� $��F,

��� �

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (WashCar.txt), can be downloaded from the course web
site.

Code 6.11

The program output is shown in Figure 6.15.

c� HERIOT-WATT UNIVERSITY 2005

6.13. THE IF.. THEN.. ELSE STATEMENT 137

Figure 6.14:

6.13.6 Logical Not

Use of the logical ��� operator is shown below:

�� �E��� � M� ��� ��� �E�$� � M� ����

�����
��� �

��� ��

In this example if E��� is equal to 6 and E�$� is not equal to 6 then �����
��� � is
executed. The ��� operator inverts true/false values e.g. if the value is ��	� then
������	�� � �����.

Complete the following table by dragging the TRUE/FALSE boxes into their correct place

Example The ’Word1 and Word2’ program could easily me modified to include the NOT
operator. Rewrite the code and run the program

6.13.7 Review Questions

Q16: Operators are used within expressions to assign values to variables and perform
calculations. Which one of the following operators has the highest precedence in Visual
Basic?

a) +
b) AND
c) /
d) NOT

c� HERIOT-WATT UNIVERSITY 2005

138 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Q17: What would be the result of evaluating the following expression 3 + 4 * (6 - 4)?

a) 11
b) 14
c) 23
d) 38

Q18: Which one of the following describes sequencing?

a) Alteration in the flow of control based upon the test of a condition
b) The repetitive execution of a sequence of instructions
c) The execution of program statements in order, from beginning to end
d) Exiting a loop structure after a sequence of instructions

Q19: Which one of the following expressions represents the logical AND operator?

a) Requires only one condition to be tested
b) The expression is TRUE when both conditions being tested are TRUE
c) The expression is TRUE if either the conditions being tested are TRUE
d) Can be used to test for values outwith a given range

Q20: Which one of the following is NOT a control structure in programming?

a) Sequence
b) Repetition
c) Assignment
d) Selection

6.14 Nested IF Statements (optional)

If a condition has to be tested that depends on whether another condition is already
)�	� (such as "If it’s 6:30 p.m. and if I’m logged on to SCHOLAR" then.....), nested If
statements can be used.

A nested If statement is one that’s enclosed within another If statement.

The format for a nested If statement is as follows:

 � ���������)���

 � �����������������)���

�����
���

����

������� �����
���

��� �

��� �

�� statements can be nested, but care should always be taken to ensure that the ����

statement is associated with the correct ��.

Nested IF statements can be avoided by using the Select..Case statement, which is
described in Section 6.16

c� HERIOT-WATT UNIVERSITY 2005

6.14. NESTED IF STATEMENTS (OPTIONAL) 139

The following examples exemplify the nested If statement:

Example 1 - Testing for range and the number of digits in a number

Problem: Describe the operation of the following program as seen in Code 6.12:

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 ������� 2

!���� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� ����� � �	
��� ���$��� �

!��� JJ

!)�� ���#��
 $��� ���� ��� �	
��� �� ��� �� �� ��

!���� ���� �+ ��� ����� ���
����#� ���� �� �� � ���#��:��#��

!�	
���

! � �� �� D J �� $��� �	��	� ,��	���:����#�� �	
���,

!�����$��� ,�	� �� ���#�,

(�
 ����6	
��� *� ���#��

����6	
��� � ��	�.���,"����� ���	� � �	
��� ���$��� � ��� JJ,�

 � �����6	
��� D� +� *�� �����6	
��� B� JJ�)���

 � ����6	
��� B �+)���

"��(������
"���� ����6	
���3 ,�� � ���#�� ��#�� �	
���,

����

"��(������
"���� ����6	
���3 ,�� � ��	���:��#�� �	
���,

��� �

����

"��(������
"���� ����6	
���3 ,�� �	� �� ���#�,

��� �

��� %	�

"������ %	� ����"��#��
�&���'��

���

��� %	�

This file (NestedIF.txt), can be downloaded from the course web
site.

Code 6.12

Solution: One variable, ����6	
���, is declared as an ����#��. The user is prompted
to enter a number between 1 and 99 and the value entered is stored in the variable
�	
���. If the value is not within the specified range (greater than 0 and less than 100),
then the ���� part of the outer �� statement is executed and the message Number is

c� HERIOT-WATT UNIVERSITY 2005

140 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

out of range is displayed on the screen and the program is finished.

On the other hand, if the value is within range, then the first part of the outer �� statement
is executed which contains several lines of code between �� and ��� �. Within this
block of code is another �� statement which tests if the number is less than 10, in which
case the message single digit number is displayed on the screen, otherwise (else), the
message double digit number is displayed on the screen.

The program output is shown in Figure 6.15

Figure 6.15:

Please take time to follow this explanation through. If you can see the ’how’ and ’why’ of
it, you will be able to program �� statements - nested or plain - without any worries

6.15 If...Then...ElseIf (optional)

Nested �� statements can be fairly complex to follow and can give rise to what is known
as ’spaghetti code’. It is usually better to use Select..Case, as described in Section 6.16

The ���� � statement can simplify expressions to a certain extent. The structure of the
statement is:

�� ����������� ����

�����
���� �

������ ����������� ����

�����
���� �

������ ����������� ����

�����
���� �

����

�����
���� �

c� HERIOT-WATT UNIVERSITY 2005

6.15. IF...THEN...ELSEIF (OPTIONAL) 141

These expressions are evaluated in order, if any expression is true, the statement
associated with it is executed and this terminates the whole chain. As many decisions
as desired may be included within the chain. As always, the code for each statement is
either a single statement or a group of statements.

Consider the situation where you have two boolean variables, ������ and ������, and
you need to take actions for each of the possible combinations of true and false.

Using nested �� statements would produce:

 � ������ �)�	�)���

 � ������ � ��	�)���

�����
���� ��� ��	�G��	�

����

�����
���� ��� ��	�G�����

��� �

����

 � ������ � �����)���

�����
���� ��� �����G��	�

����

�����
���� ��� �����G�����

��� �

��� �

Using ���� 2 will produce the following, more compact code:

 � ������ *�� ������)���

�����
���� ��� ��	�G��	�

���� � ������ *�� 6�� ������)���

�����
���� ��� ��	�G�����

���� � 6�� ������ *�� ������)���

�����
���� ��� �����G��	�

����

�����
���� ��� �����G�����

��� �

The following examples will show the �

��� � statement in use:

Example 1 - Using an elseif statement to calculate the number of digits in a
number

Problem: How can an ���� �� statement be used to find out whether an integer number
is within a certain range (a positive number) and how many digits it contains?

Solution: A typical solution to this problem is shown here.

�� �	
��� D� �+++ ����

����#��� � �

������ �	
��� D� �++ ����

����#��� � �

������ �	
��� D� �+ ����

c� HERIOT-WATT UNIVERSITY 2005

142 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

����#��� � �

������ �	
��� D� + ����

����#��� � �

����

������,E��	� �	� �� ���#�,�

The above code shows an example of how this could be achieved.

� You start testing if the variable �	
��� is greater than or equal to 1000, in which
case there are 4 digits (you must be assuming that the variable �	
��� is not
greater than 999) and the variable ����#��� is set to 4. If it is not greater than or
equal to 1000, then you move onto the next branch of the �� statement.

� The next condition tests the variable �	
��� to see if it is greater than or equal
to 100. If this is true then you know the variable �	
��� has a value between
100 and 999, and so it must have 3 digits, and the variable ����#��� is set to 3.
Again, if this condition is not fulfilled, then you move onto the next branch of the ��

statement.

� The next condition tests the variable �	
��� to see if it is greater than or equal to
10. If this is true then you know the variable �	
��� has a value between 10 and
99, and so it must have 2 digits, and the variable ����#��� is set to 2. Again, if this
condition is not fulfilled, then you move onto the next branch of the �� statement.

� The next condition tests the variable �	
��� to see if it greater than or equal to 0.
If this is true then you know that the variable number has a value between 0 and
9, and so it must have one digit. The variable ����#��� is set to 1.

� The next branch of the �� statement is not an ������ branch, but an ���� branch,
and so does not have a condition but is the branch that is executed if none of the
other conditions are met. Execution of this branch of the �� statement results in
the message E��	� �	� �� ���#� being displayed on the screen.

Example 2 - Grades and Marks

Problem: Write a program using the ���� � construct for a user to input a test result
and output the corresponding grade. Test scores range from 0 to 100 and the grades
from "A" being the highest to "E" the lowest.

Solution

Use the following algorithm:

� ��' 	��� �� ���	� �
��' ���$��� + ��� �++

� �
��' �D�+ ��� B �+� ���� #���� ,�,

� ���� �
��'�D��+ ��� B �J� ���� #���� ,(,

� ������
��'�D��J ��� B M�� ���� #���� ,&,

� ������
��'�D�M� ��� B 4�� ���� #���� ,.,

M ������
��'�D�4� ��� B��++� ���� #���� ,*,

I ���� �	
��� �	� �� ���#�

4 ��� ��

J �
��' �D�+ ��� B� �++�

c� HERIOT-WATT UNIVERSITY 2005

6.15. IF...THEN...ELSEIF (OPTIONAL) 143

�+ ������� #����

�� ��� ��

The full Visual Basic program is shown in Code 6.13:

L����� ��������

"������ %	� &�

�����&���'��

!>��'� ��� #����� ���#��

!���� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� ����� �
��' ���

!� #���� $��� �� �	��	�

(�
 �>��' *� ���#��

(�
 �A���� *� %����#

�>��' � ��	�.���,"����� ���	� � ����
��' ,�

 � ��>��' D� +� *�� ��>��' B �+�)���

�A���� � ,�,

���� � ��>��' D� �+� *�� ��>��' B �+�)���

�A���� � ,(,

���� � ��>��' D� �+� *�� ��>��' B M��)���

�A���� � ,&,

���� � ��>��' D� M�� *�� ��>��' B 4��)���

�A���� � ,.,

���� � ��>��' D� 4�� *�� ��>��' B� �++�)���

�A���� � ,*,

����

"��(������
"���� �>��'3 , �� �	� �� ���#�F)�� �#���
,

��� �

 � ��>��' D� +� *�� ��>��' B� �++�)���

"��(������
"���� �>��'3 , � #���� ,3 �A����

��� �

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (Grades.txt), can be downloaded from the course web
site.

Code 6.13

Figure 6.16 shows the program output:

c� HERIOT-WATT UNIVERSITY 2005

144 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

Figure 6.16:

Calculating the number of digits in a number

20 min

�

Æ

�

�

Learning Objective

Refining an existing program to make it user-friendly

Write a program which will calculate the number of digits in a number. The error
messages should be helpful and user-friendly. The program should deal correctly with
numbers having four, or more, digits by giving the error message Value out of range.
Maximum of three digits numbers, please.

Calculating Leap Years

20 min

�

Æ

�

�

Learning Objective

Be able to use the �� statement.

Be able to make us of constants where appropriate.

A leap year is a year which is exactly divisible by 4, unless it is exactly divisible by 100
in which case it is only a leap year if it is exactly divisible by 400.

Write a program which prompts the user for a year and then displays if it is a leap year
or not.

Note: Use ���� �� in your code. You will also need to be careful that you do the tests
for leap years and leap centuries in the correct order. If you test for leap years first, then
1900 is divisible by 4, but as it is not a leap century it will not be a leap year either.

c� HERIOT-WATT UNIVERSITY 2005

6.16. THE SELECT CASE STATEMENT 145

6.16 The Select Case Statement

The &��� statement is a special instance of the �

)���

���� � structure.

To implement multi-way decisions the ���� statement provides a more concise and
elegant representation than multiple ���� �� and ������ �� statements, which can get
very difficult to follow. Probably if you have more than three ���� �� statements you
should consider using the ���� statement instead.

The ���� statement is particularly useful when selection is based on a single variable or
a simple expression. This is called the case selector. Note that the case selector must
be an ordinal data type i.e. one whose values can be listed, such as ����#��7 �����#

or �������.

The structure of the &��� statement is:

%����� ���� ���� ����������

&��� ���	��

.���' �� ��� ��
��� �����
����

&��� ���	��

.���' �� ��� ��
��� �����
����

&��� ���	��

.���' �� ��� ��
��� �����
����

&��� ����

2���� ����' �� ��� ��
��� �����
����

��� %�����

The first statement of the %����� &��� block is the Select Case statement itself. This
statement identifies the value to be tested against all possible results. This value,
represented by the E��	� �, E��	� � etc. and can be any valid numeric or string
expression, a variable, a logical expression, or a function.

Each group of commands is initiated by the &��� statement. The &��� statement
identifies the expression to which the E��	� is compared. The &��� statement can
express a single value or a range of values. If the E��	� is equal to or within range
of the expression, the commands after the &��� statement are run. The program runs
the commands between the current &��� statement and the next &��� statement or the
��� %����� statement. If the E��	� isn’t equal to the value expression or doesn’t fall
within a range defined for the &��� statement, the program proceeds to the next &���
statement.

A number of worked solutions to problems are given here - make sure you understand
what is going on in these examples. Run these programs for yourself and experiment
with making changes to the code to ensure you understand what is happening.

c� HERIOT-WATT UNIVERSITY 2005

146 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

6.16.1 Select Case Example 1

Example 1: Write a program to input an integer between 1 and 7 and the day of the
week will be output.

Solution

Use the following algorithm:

� ��' 	��� �� ���	� �	
��� ���$��� � ��� I ����	����

� ������ ���� �	
���

� ���� �� � � �	��	� ,%	����,

� ���� �� � � �	��	� ,>�����,

� ���� �� � � �	��	� ,)	�����,

M ���� �� � � �	��	� ,1��������,

I ���� �� � � �	��	� ,)�	�����,

4 ���� �� � M �	��	� ,2�����,

J ���� ���� �	��	� ,%��	����,

�+ ��� ������

Note the use of keyword ��. Whenever a condition is expressed within a statement the
keyword �� is used to impose the condition.

The full Visual Basic program is shown in Code 6.14

L����� ��������

"������ %	� &�

�����&���'��

!H�� �� ��� &��� %����� �����
������

!���� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� ����� � �	
���

!��� ��� ��� $��� �� �	��	�

(�
 �(�� *� ���#��

�(�� � ��	�.���,"����� ���	� � �	
��� ���$��� � ��� I ,�

%����� &��� �(��

&��� � � �

"��(������
"���� �(��3 , � %	����,

&��� � � �

"��(������
"���� �(��3 , � >�����,

&��� � � �

"��(������
"���� �(��3 , �)	�����,

&��� � � �

"��(������
"���� �(��3 , � 1��������,

&��� � � �

"��(������
"���� �(��3 , �)�	�����,

&��� � � M

"��(������
"���� �(��3 , � 2�����,

c� HERIOT-WATT UNIVERSITY 2005

6.16. THE SELECT CASE STATEMENT 147

&��� ����

"��(������
"���� �(��3 , � %��	����,

��� %�����

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (Case1.txt), can be downloaded from the course web site.

Code 6.14

The program output is shown in Figure 6.17

Figure 6.17:

6.16.2 Select Case Example 2

Example 2 - Using the ���� ������ statement with a range of values

Problem: Rewrite the previous �

)���

���� � program, Code 6.13, using
%����� &��� Statement

Solution

Here the keyword)� is used to represent values within a range.

Use the following algorithm:

� ��' 	��� �� ���	� �
��' ���$��� + ��� �++

� ������ ����
��'

� ���� 4� �� �++ �	��	� A���� !*!

� ���� M� �� 4� �	��	� A���� !.!

� ���� �+ �� M� �	��	� A���� !&!

c� HERIOT-WATT UNIVERSITY 2005

148 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

M ���� �+ �� �J �	��	� A���� !(!

I ���� + �� �J �	��	� A���� !�!

4 ���� ���� �	��	� ,
��' �	����� ���#�F)�� �#���,

J ��� ������

The full Visual Basic program is shown in Code 6.15

L����� ��������

"������ %	� &�

�����&���'��

!H�� �� ��� &��� %����� �����
���

!���� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� ����� � ����

!��� ���
���� $��� �� �	��	�

(�
 �>��' *� ���#��

�>��' � ��	�.���,"����� ���	� � ����
��' ,�

%����� &��� �>��'

&��� 4�)� �++

"��(������
"���� �>��'3 , � #���� * ,

&��� M�)� 4�

"��(������
"���� �>��'3 , � #���� . ,

&��� �+)� M�

"��(������
"���� �>��'3 , � #���� & ,

&��� �+)� �J

"��(������
"���� �>��'3 , � #���� (,

&��� +)� �J

"��(������
"���� �>��'3 , � #���� � ,

&��� ����

"��(������
"���� �>��'3 , �� �	� �� ���#�F)�� �#���
,

��� %�����

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (Case2.txt), can be downloaded from the course web site.

Code 6.15

Program output is shown in Figure 6.18:

c� HERIOT-WATT UNIVERSITY 2005

6.16. THE SELECT CASE STATEMENT 149

Figure 6.18:

6.16.3 Select Case Example 3

Example 3 - Extending the testing for a weekend or weekday using text Input

Problem: Write a program to test whether a �����# variable (�� holds text that
represents a week day or a weekend. Assume input can be in either lower or upper
case.

Solution: The statement in the previous example, Code 6.14, could be extended to give
the following program Code 6.16:

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 	�� �� ���� �����
��� ���

!�M�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)� ���$ ��� 	�� �� ���� $��� 	���� �� ��$�� ���� ���	�

(�
 (�� *� %����#

(�
 2����-����� *� %����#

(�� � ��	�.���,"����� ����� ��� ���,�

2����-����� � -���O�(��7 �� !"��' ��� ����� ���������

%����� &��� 2����-�����

&��� ,�,7 ,%,

"��(������
"���� (��3 , �� ��� $��'���3 ,

&��� ,
,7 ,>,

c� HERIOT-WATT UNIVERSITY 2005

150 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

"��(������
"���� (��3 , �� � $��'��� ,

&��� ,�,7 ,),

"��(������
"���� (��3 , �� � $��'��� ,

&��� ,$,7 ,1,

"��(������
"���� (��3 , �� � $��'��� ,

&��� ,�,7 ,2,

"��(������
"���� (��3 , �� � $��'��� ,

&��� ����

"��(������
"���� (��3 , �� ��� � ���F ,

��� %�����

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (Case3.txt), can be downloaded from the course web site.

Code 6.16

Program output is shown in Figure 6.19:

Figure 6.19:

It is really important that you study this example carefully. You will probably use the ����

statement a lot.

This program uses the ���� statement to check whether the letter typed in by the
user matches � (Saturday and Sunday),
 (Monday), � (Tuesday and Thursday), $

(Wednesday) or � (Friday). If the match is with � it can only be a weekend. All other
matches must be week days.

Note: Here you are comparing with the single character and not the entire string called
Day so single quotes are required to show that you are using a character.

c� HERIOT-WATT UNIVERSITY 2005

6.17. SUMMARY 151

In order to test the first character of the string (�� the Visual Basic in-built function -���O

is used.

For example -���O�>�����7 �� would produce the character ,>,

6.16.4 Select..Case Summary

Sentence completion - ���� statement

On the Web is a interactivity. You should now complete this task.

Musical Notes

40 min

�

Æ

�

�

Learning Objective

Be able to use the �$���� statement.

A, B, C, D, E, F and G are valid musical notes.

Write a program that allows the user to input a character and uses a &*%� statement to
test and display if the character is a valid musical note.

6.17 Summary

The following summary points are related to the learning objectives in the topic
introduction:

� introduction to the Visual Basic environment;

� existence of various data types including local and global forms;

� what is meant by the scope of a variable;

� discussion of formatted input/output with coded examples;

� discussion of conditional statement structures with coded examples;

� exemplification of the CASE statement.

6.18 End of topic test

An online assessment is provided to help you review this topic.

c� HERIOT-WATT UNIVERSITY 2005

152 TOPIC 6. HIGH LEVEL LANGUAGE CONSTRUCTS 1

c� HERIOT-WATT UNIVERSITY 2005

153

Topic 7

High Level Language Constructs 2

Contents

7.1 Introduction . 155

7.2 Iteration . 155

7.2.1 The For..Next loop . 156

7.2.2 For..Next loop Examples . 157

7.2.3 Nested For loops . 160

7.2.4 Review Questions . 165

7.3 Formatting output . 166

7.4 Do Loops . 167

7.4.1 Do While..loop . 167

7.4.2 Examples of Do While.. Loop . 168

7.4.3 Do Until..Loop . 173

7.4.4 Review Questions . 179

7.5 Arrays . 181

7.5.1 Declaring arrays . 183

7.5.2 Initialising arrays . 184

7.5.3 Examples of using arrays . 185

7.5.4 Review Questions . 189

7.5.5 Worked example programs . 190

7.5.6 Simulations . 193

7.5.7 Simulation of tossing a coin . 194

7.5.8 Testing for Palindromes using an array 196

7.5.9 More Array Examples . 200

7.6 Summary . 201

7.7 End of topic test . 201

Prerequisite knowledge

Before studying this topic you should be able to describe and use the following
constructs in pseudo-code and a suitable high level language:

� fixed loops;

� conditional loops using simple and complex conditions;

154 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

� nested loops;

� 1-D arrays.

Learning Objectives

� Be able to declare a 1-dimensional array

� Be able to access array elements

� Be able to manipulate data within arrays using iterative structures

c� HERIOT-WATT UNIVERSITY 2005

7.1. INTRODUCTION 155

Revision

Q1: An array is described as a structured data type. This means that:

a) Data items are all in order
b) Data items will take up a lot of computer memory
c) Data items of the same type are grouped together
d) None of the above

Q2: A 1-D string array called Days(0-6) hold the days of the week. The 4th array
element is assigned the value Wednesday. The correct statement for this is:

a) Days(4) = "Wednesday"
b) Days(3) = Wednesday
c) Days(4) = Wednesday
d) Days(3) = "Wednesday"

Q3: An array called List(5) contains the integers 1 to 6 in sequence. If the 2nd and
4th elements are now assigned the values 8 and 9 respectively, the array List will now
contain:

a) 1, 2, 3, 8, 5, 9
b) 1, 2, 8, 4, 9, 6
c) 1, 8, 3, 9, 5, 6
d) 8, 2, 9, 4, 5, 6

7.1 Introduction

An important aspect of this topic is the 1-dimensional array. Declaring and initialising
arrays are introduced together with how data is manipulated within arrays using various
looping structures. Each sub topic has working solutions to the example programs,
providing a suitable environment for building confidence in writing programs before the
final topic, dealing with standard algorithms, is covered.

7.2 Iteration

The aim of this topic is to introduce you to iterative structures, or loops. Iteration simply
means repetition, which in the context of programming is the execution of blocks of code
many times over.

Iteration is a fundamental part of almost every program and is one of the most useful
features of programming. You do not want a computer to produce one payslip, but many
payslips; to add up just two numbers but thousands of numbers; to put in order just two
items but thousands of items.

c� HERIOT-WATT UNIVERSITY 2005

156 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

There are three different looping constructs you can use in Visual Basic:

1. For...Next loop

2. Do...While loop

3. Do...Until loop

Most loops have the following characteristics in common:

� initialisation

� a condition which evaluates either to TRUE or FALSE

� a counter that increments or decrements by discrete values.

7.2.1 The For..Next loop

The ��� keyword marks the beginning of the code which will be repeated according to
the conditions supplied following the ���.

When incrementing, the general form of the statement is:

��� ��	���� � ������� ���	� �� ����� ���	� ���� ���	�

�����
����

6��� ��	����

When decrementing, the general form of the statement is:

��� ��	���� � ������� ���	� �� ����� ���	� ���� :�� ���	�

�����
����3

6��� ��	����

Note:

1. The initialisation statement is carried out only once when the loop is first entered
i.e. initialise counter to initial value

2. The condition is tested before each run through the body of the loop. The first
test is immediately after initialisation, so if the test fails the statements in the
body are not run. An incrementing loop terminates when counter � final, while
a decrementing loop terminates when counter � final

3. An increment or decrement of the counter variable is executed after the loop body
and before the next test. The value of the counter is incremented or decremented
by the step value.

c� HERIOT-WATT UNIVERSITY 2005

7.2. ITERATION 157

4. the value of counter must not be changed in any statements within the body of the
loop

5. changing the value of final within the loop will have no effect on how many times
the loop is executed

6. after the loop has terminated, the value of counter is undefined

7. counter may be any ordinal type e.g. ����#��7 ����

����
���������

����������

���������������

�
�#

"� �#

����������

���������

Figure 7.1:

The initial and final states may be constants, variables or expressions e.g.

��� ��	���� � �
��5I� �� �
��:��

The following examples will show the ���

���� loop in operation.

7.2.2 For..Next loop Examples

Example 1: Converting inches to centimetres

Problem: Write a program that will convert inches to centimetres for a range of values
and using an increment of 5. Use the ���

���� and output the results in tabular form.
Use the conversion factor 2.54 centimetres to the inch.

Solution

The algorithm is shown below:

� ��� ���� ���	� ���
 � �� �+ ���� �

� ����	���� ���������� �� �����
����� 	���# ��� ������ �
��

� ���	���� �	��	�

� ���� ��	����

c� HERIOT-WATT UNIVERSITY 2005

158 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

The full Visual Basic program is seen in Code 7.1

L����� ��������

"������ %	� &�

�����&���'��

!�M�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���	������ ��� 2��

6��� ����

(�
 ����� *� ���#��

(�
 &
� *� %��#��

"��(������
"����)�����3 , �����,3)������3 ,&����
�����,

"��(������
"����

2�� ����� � +)� �+ %��� �

&
� � ����� N �
��

"��(������
"����)�����3 �����3)������3 &
�

6��� �����

��� %	�

Code 7.1

The program output is shown in Figure 7.2

Figure 7.2:

Note that the output of this program is in tabular form. This was achieved using the
)*.�� function, first to output the heading then the results. Tab is short for tabulate and

c� HERIOT-WATT UNIVERSITY 2005

7.2. ITERATION 159

the output items are separated by the values within the tab statements.

If the value of ���� is not specified it is assumed by Visual Basic to be the value 1 by
default.

Example 2: Displaying integers using negative step

Problem: Write a program that will output integers from 100 to 65 together with the
corresponding characters that the numbers represent. Use a for..next loop with -ve step
and output the results in tabular form.

Solution:

�
 ������� ,)�� ����#��� ���
 �++ �� M�,

�
 ��� ��	���� � �++ �� M� ���� :�

�
 ������� ��� ���	� �� ��� ����#�� ��� ���������

�
 ���� ��	����

The Visual Basic program is shown in Code 7.2

L����� ��������

"������ %	� &�

�����&���'��

!�M�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���	������ ��� 2��

6��� ���� 	���# :�� ����

(�
 &�	���� *� ���#��

(�
 &��� *� %����#

"��(������
"���� %�����3 , ���#��,3 %������3 ,&��������,

"��(������
"����

2�� &�	���� � J+)� M� %��� :�

&��� � &��O�&�	�����

"��(������
"���� %�����3 &�	����3 %������3 &���

6��� &�	����

��� %	�

Code 7.2

Note that, in this case the output has been formatted using the %"&�� function. This
allocates a number of spaces between output items depending on the value expressed
within the function.

The program also uses the &C/O�� function to convert a numerical value to its
corresponding character.

For example: &��O�M�� returns the character "A"

Part of the program output is shown in Figure 7.3

c� HERIOT-WATT UNIVERSITY 2005

160 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Figure 7.3:

7.2.3 Nested For loops

2��

6��� loops can be nested to allow the programming of loops within loops.

Example 1: Use of nested loops

Consider the Visual Basic program in Code 7.3. See if you can visualise what the output
will be before looking at the results screen:

L����� ��������

"������ %	� &�

�����&���'��

!�M�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���	������ ������ �����

(�
 L	��� *� ���#��7 ���� *� ���#��

2�� L	��� � �)� ��

2�� ���� � L	���)� ��

"��(������
"���� ����3

6��� ����

c� HERIOT-WATT UNIVERSITY 2005

7.2. ITERATION 161

"��(������
"����

6��� L	���

��� %	�

This file (NestedIF2.txt), can be downloaded from the course web
site.

Code 7.3

In this program there are two loops that are controlled by the variables L	��� and ����.

"���(����

)�0��(����

"��������

)�0�������

(����� ���

������ ���

The outer loop is initialised with the variable L	��� � �. The inner, nested loop is now
executed 15 times and the first line of numbers are printed on the same line. This is
achieved by using the semi colon at the end of the first print statement. L	��� then
takes on the ���	� � and the process repeats itself until L	��� � ��. Each time the
output is decreased by 1 as the outer loop is executed until the value 15 is reached.

The print statement on its own ensures that a new line is taken for the next row of output.
The print statement on its own basically means a line feed.

The output of the program is shown in Figure 7.4:

Note that it is considered bad programming practice to jump out of loops without
terminating them fully. After the loops terminate the counter variables are discarded
so if this is aborted prematurely, program output may not be as expected.

c� HERIOT-WATT UNIVERSITY 2005

162 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Figure 7.4:

Experiment with the loops and range of numbers to arrive at different outputs.

Problem 2: Use of an If statement with nested For..Next loop

Problem: Write a program that calculates bank interest on a sum of money that is input
by the user. Output the capital sum together with the interest.

Solution:

Consider the following algorithm:

� *�' 	��� �� ���	� ���	�

� � ���	� BD +

� ��� ��	�� � � �� �+

� ����	���� �������� �� ���	�

� �	��	� ���	� ��� ��������

M ���� ��	��

I ���� �	��	�
����#� ,E��	� ��� ����� : ��� �#���F,

4 ��� ��

c� HERIOT-WATT UNIVERSITY 2005

7.2. ITERATION 163

The Visual Basic Code 7.4 is shown:

L����� ��������

"������ %	� &�

�����&���'��

!�M�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���	������ ������ ���� ��� 2

(�
 &������ *� ���#��7 &�	���� *� ���#��

(�
 ������� *� %��#��

&������ � ��	�.���,"����� ���	� ������� �
�	��,�

%	
(������
"���� &������

 � &������ BD +)���

"��(������
"����

2�� &�	���� � �)� �+

 ������� � �&������ N &�	����� G �++

"��(������
"����)�����3 ,O, P &������3)������3 , $��� #���

, P ,O, P ������� P , �� , P &�	���� P ,T,

6��� &�	����

����

"��(������
"���� ,O, P &������ P , �� ��� � ����� ���	�
 "����� ��� �#���F,

��� �

��� %	�

Code 7.4

The program involves an � statement with an embedded ���

���� statement. If the
capital sum entered does not meet the initial condition then control will be passed to the
���� �����
���. If the condition is met then the program will continue and execute the
���

���� statement and output results.

Note the output line which looks rather complex. All it is doing is concatenating the
output as a mixture of string and program variables. Concatenation is not just reserved
for strings.

Code and run the program. You should end up with output as shown in Figure 7.5

c� HERIOT-WATT UNIVERSITY 2005

164 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Figure 7.5:

Exercise - Right Angle Triangles

40 min

Write a program that will output integer values representing the sides of right-angled
triangles that satisfy Pythagoras’s theorem i.e

�S� 5 �S� � �S�

Only output values that satisfy the equation.

Hint: You will require three nested ���

���� loops and experiment with loop values up
to 10 for each loop otherwise the program may run out of memory.

Drawing right-angled triangles

30 min

Use a nested loop to draw right-angled triangle as shown below:

N

NNN

NNNNN

NNNNNNN

NNNNNNNNN

c� HERIOT-WATT UNIVERSITY 2005

7.2. ITERATION 165

Mowing meadows

30 min

Use a nested loop to generate the following lines of a well known verse:

�
�� $��� ��
�$ �
����$

�
��7 �
�� $��� ��
�$ �
����$

�
��7 �
��7 �
�� $��� ��
�$ �
����$

6
��7 6:�
��7 6:�
��7

7 �
�� $��� ��
�$ �
����$

for N = 10.

7.2.4 Review Questions

Q4: Which one of the following describes correctly an incremental for loop?

a) Control variable is decreasing in value by a variable amount
b) Control loop variable is increasing in value by 1
c) Control loop variable is increasing by a variable amount
d) Control loop variable is increasing in value by a constant amount determined by the

programmer

Q5: Which one of the following statements is not permitted?

a) For loopCounter = (3*4) to (5*6) step 1
b) For loopCounter = (3*4) to (5*1) step -1
c) For loopCounter = (3*4) to (5*2) step 1
d) For loopCounter = (3*4.16) to (5*5.6) step 1

Q6: Which one of the following problems is best suited to the use of a FOR loop?

a) Calculating the total number of marks entered at a keyboard
b) As an event loop that checks for keyboard input
c) Calculating the average of marks held in a file
d) All of the above

Q7: What shape will be displayed by the following Visual Basic program fragment for
any value of N � 1?

��� � � � �� 6

��� ; � � �� �

����� ,5,3

���� ;

�����

���� �

a) Triangle
b) Square
c) Rectangle
d) Circle

c� HERIOT-WATT UNIVERSITY 2005

166 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Q8: What will be displayed by the following Visual Basic program fragment, assuming
N = 3

�	
 � +

��� � � � �� 6

��� ; � � �� 6

�	
 � �	
 5 ;

���� ;

���� �

����� �	

a) 16
b) 17
c) 18
d) 19

7.3 Formatting output

Up to this point it has been left to Visual Basic to output data in default mode. However it
is possible to have more control over how ���� ���	��7 �	������7 ������� variables
are output by using the Visual Basic in-built function 2��
����.

The structure of the Format function is:

2��
�� ���������7 ���
�� �����������

Table 7.1 shows the formatting functions within Visual Basic:

Table 7.1:

Format name Meaning Examples

General Displays raw number without separators 12345

Fixed Displays at least one digit before the decimal
point and two digits after the point

67.88

Scientific Uses scientific notation 6.023 E23

Standard Displays numbers with separators and two
digits after the decimal point

1,234.56

Currency Same as standard. Negative values are
enclosed within parentheses (brackets)

(1,234.56)

Percent Displays numbers multiplied by 100 with two
digits after the decimal point followed by the %
sign

12345.67%

Exercise - Output formats

Write a Visual Basic program to input a value and output the value in each of the formats
in Table 7.1. Use the algorithm below to help you. Make the value large enough so that
all aspects of the formatting can be shown.

c� HERIOT-WATT UNIVERSITY 2005

7.4. DO LOOPS 167

� (������ ��������

� ��	� � ���� ���	�

� "���� ,%������� ���
�� � ,7 2��
�� ���	�7 ,%�������,�

� ������ ��� ����� ���
���

Run the program a few times with different values so that you understand the nature of
each format.

7.4 Do Loops

With the ���

���� loop the number of iterations must be known in advance so that the
counter variable can be set.

There are many occasions in programming where the number of iterations is unknown
so an alternative looping structure has to be used. The (�

-��� is a viable alternative
to the ���

���� statement.

In Visual Basic, (�

����� come in a variety of flavours and for any given program there
will probably be more than one solution using a (�

���� variant.

There are two main ��

���� constructs with two variants::

1. (� 1����

���� (and ������� (� ����

1����)

2. (� H����

���� (and ������� (� ����

H����)

7.4.1 Do While..loop

The �� $���� loop repeats a given set of instructions while a given condition is true.

The general form of this statement is:

(� $���� ���� ���������

�����
����

-���

The loop repeats itself until the condition becomes �����.

If the condition is false to begin with then the ��

$���� loop will not be entered and
control will pass to the rest of the program.

See Figure 7.6

c� HERIOT-WATT UNIVERSITY 2005

168 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

����
���������

����������

���������������

�
�#

"� �#

Figure 7.6:

The �� $����

���� is an example of a top tested while true structure. The variant do
loop..while is an example of a bottom tested while true structure:

(�

�����
����

-��� $���� ���� ���������

The top tested loop can iterate between 0 and N times whereas the bottom tested loop
may iterate between 1 and N. This means that using the bottom tested loop the iteration
must occur at least once, so the condition can be tested immediately.

Care should be taken when writing programs using loops as an incorrect condition, or
mistakes in the body of the loop can cause the program to get stuck in an infinite loop
when executing, even when compilation produced no errors. Should this occur in Visual
Basic simply click on program /	� and choose ���. In more extreme cases pressing
���� 5 ��� 5 ������ will allow you to abort Visual Basic.

7.4.2 Examples of Do While.. Loop

Example 1 - Calculating a sum of positive integers

Problem: A program is required to accept positive numbers from the keyboard, calculate
and display a sum of all the numbers entered. It should use a do while..loop which
tests whether each number entered is greater than or equal to zero. If the user enters
a negative number then the loop will terminate and the total will be displayed on the
screen.

c� HERIOT-WATT UNIVERSITY 2005

7.4. DO LOOPS 169

Solution:

The algorithm is shown below:

�
 ��� ��� �	����# ����� �� +

�
 ������� ,A���
� ��	� ����� �	
���,

�
 #�� �	
��� ����� �� �� ��� '�������

�
 �� $���� 	���!� �	
��� D� +

�
 ��� �	
��� �� ��� �	����# �����

M
 ������� ,A���
� ��� ���� �	
���,

I
 #�� ���	� ����� �� �� ��� '�������

4
 ����

J
 ������� ��� �����

The Visual Basic program is shown as Code 7.5

L����� ��������

"������ %	� &�

�����&���'��

!�I�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���	������ ��� (� 1����

����

!���#��
 ���"��

!)��� ���#��
 $��� ��� � ���� �� �������� �	
���� ����� ��

!�� ��� '�������
)�� ���#��
 $��� ���� $��� � ��#����� �	
���

!�� ������� ��� ������� ��� �����

(�
 �6	
��� *� ���#��7)���� *� ���#��

)���� � +

�6	
��� � ��	�.���,A���
� ��	� ����� �	
��� ,�

(� 1���� �6	
��� D� +

)���� �)���� 5 �6	
���

�6	
��� � ��	�.���,A���
� ��	� 6��� �	
���,�

"��(������
"���� �,<�	� �	
���� ��� 	� �� ,�3)����

-���

��� %	�

This file (DoWhile.txt), can be downloaded from the course web
site.

Code 7.5

The program output is shown in Figure 7.7

c� HERIOT-WATT UNIVERSITY 2005

170 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Figure 7.7:

Example 2 - Validating character input Problem:

A program is written to prompt the user to enter a character. The program continues to
prompt until it receives a character other than a ’Y’ or a ’y’.

Solution:

The algorithm is shown below:

�
 ������� ,&�����	� =,

�
 #�� ���	� ���
 ��� '�������

�
 �� $���� 	��� ������ ,<, �� 	��� ������ ,�,

�
 ������� ,&�����	�,

�
 #�� ���	� ���
 ��� '�������

M
 ����

I
 ������� ,L	� �� ����,

The Visual Basic program is shown in Code 7.6

L����� ��������

"������ %	� &�

�����&���'��

!�I�� 2���	��� �++�

c� HERIOT-WATT UNIVERSITY 2005

7.4. DO LOOPS 171

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���	������ ��� (� 1����

����

!"��#��
 &��������

!)��� ���#��
 ���
��� ��� 	��� �� ����� � ���������

! � 	��� � 1C -� ���� �� ���������� ����' ���� �

!��������� ����� ���� � !<! �� � !�! ��� ���� �������

(�
 /������� *� %����#

"��(������
"���� �,(� ��	 $��� �� ������	� =,�

/������� � ��	�.���,< �� �,�

(� 1���� �/������� � ,<,� L� �/������� � ,�,�

/������� � ��	�.���,&�����	� =,�

-���

"��(������
"���� �,L	� �� ����,�

��� %	�

This file (Validate.txt), can be downloaded from the course web
site.

Code 7.6

The program output is minimal; since it only responds to the correct input then the
program will simply accept the character that is entered. Only when the incorrect
character is entered will the program fail to enter the loop and come up with the message
"Out of loop".

This code can be used as part of a larger program to validate input. If coded as
a procedure then it can be called from within the main program. We will discuss
procedures more fully later in the final topic.

Example - Range checking using a boolean variable

Problem: A program is required to ask the user to enter a value. If the value is outside
the range expected the user will be prompted to enter another value. (This is another
example of validation, only in this program the use of a boolean variable is exemplified.)

Solution:

The algorithm is shown below:

�
 ���	� ,1��� ���� �� ������=,

�
 ��� ���	� �� �' �� �����

�
 �� $���� �' � �����

�
 �� ����� D� ��$ ���	�� ��� ����� B� ��#� ���	�� ����

M
 ��� �' �� ��	�

I
 ������� ,)��� ���� �� ���#�,

4
 ����

J
 ������� ,)��� ���� �� �	� �� ���#�,

�+
 ������� ,)�� �������# ������� ����,

c� HERIOT-WATT UNIVERSITY 2005

172 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

��
 ���	� ,1��� ���� �� ������=,

��
 ��� ��

��
 ����

��
 ������� ,L	� �� ����,

The Visual Basic program is shown in Code 7.7

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 /��#�&���'

!�4�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 ���
��� ��� 	��� �� ����� �	
���� ���	�

! � 	��� � 1C -� ���� �� ���������� ����' ���� �

!���	� $���� �� ���$��� -�$E��	� ��� C�#�E��	�

&���� -�$E��	� *� ���#�� � �+

&���� C�#�E��	� *� ���#�� � �+

(�
 ���� *� ���#��

(�
 LU *� .������

LU � 2����

���� � ��	�.���,1��� ���� �� ��K	����=,�

(� 1���� 6�� LU

 � ����� D� -�$E��	�� *�� ����� B� C�#�E��	��)���

LU �)�	�

"���� ����3 , �� �� ���#�,

����

"���� ����3 , �� �	� �� ���#�7 ��� �#���,

���� � ��	�.���,1��� ���� �� ��K	����=,�

��� �

-���

"���� �,L	� �� ����,�

��� %	�

This file (RangeCheck.txt), can be downloaded from the course
web site.

Code 7.7

Sample program output is seen in Figure 7.8

c� HERIOT-WATT UNIVERSITY 2005

7.4. DO LOOPS 173

Figure 7.8:

Q9: What is wrong with the following?

� � + !���	
� � �� �� ����#��

�� $���� � B �++

���	� � � N �

����

Q10: What is wrong with the following?

� � � !���	
� � �� �� ����#��

�� $���� � B� �+

"�������

� � � 5 �

Q11: Write a $���� loop that calculates the sum of all numbers between 0 and 20
inclusive. Hint: use two integer variables, one for a loop counter and one for keeping a
running total of the numbers

7.4.3 Do Until..Loop

The $����

�� loop performs the conditional test first and then executes the loop, so
the statements within a loop may never be executed. The �� 	���� loop performs the
statements first and then tests the condition. This means that the body of the loop is
always executed at least once. This is the only difference, but a significant one between
these looping constructs.

c� HERIOT-WATT UNIVERSITY 2005

174 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

����
���������

����������

���������������

�
�#

"� �#

Figure 7.9:

The general form of a �� 	����

 ���� is:

(� H���� ���� ���������

�����
����

����

The statements in the body of the loop are executed repeatedly until the test condition
is FALSE.

See Figure 7.9

The �� 	����

���� is an example of a top tested while false structure. The variant
�� ����

	���� is an example of a bottom tested while false structure:

(�

�����
����

-��� 	���� ���� ���������

The top tested loop can iterate between 0 and N times whereas the bottom tested loop
may iterate between 1 and N. This means that using the bottom tested loop the iteration
must occur at least once, so the condition can be tested immediately.

Some simple examples should clarify the situation.

Consider the simple lines of code representing a simple �� 	����

����

(�
 6	
 *� ���#��

(� H���� 6	
 � �+

6	
 � 6	
 5 �

-���

>�#.�� 6	

c� HERIOT-WATT UNIVERSITY 2005

7.4. DO LOOPS 175

The equivalent �� $����

���� would be:

(�
 6	
 *� ���#��

(� 1���� 6	
 B �+

6	
 � 6	
 5 �

-���

>�#.�� 6	

Although both loops end up with similar results their methods are different. With the
�� 	���� ���� the condition 6	
 � �+ is set and the loop must be entered at least
once to test this condition as ��	�. 6	
 is continually tested until the condition fails i.e.
6	
 becomes � 10 and the loop exits with 6	
 � �+.

The equivalent ��

$���� loop tests the condition in the first line and if ����� the loop
will not be entered. If true then the loop will run until 6	
 � �+ when the loop exits.

When should you use one and when the other? If you know it is safe to run the code
at least once, probably you should use the ��

	���� loop. If you must run the code
at least once then again a ��

	���� loop is a good solution. If there is any reason
to doubt the value of any variables etc. in the loop, then you should always use the
��

$���� loop. Menus often use ��

	���� loops as you know that the menu needs to
be run at least once for the user to see it!

A number of worked solutions to problems are given here - make sure you understand
what is going on in these examples. You may wish to try running these programs
for yourself and to experiment with making changes to the code to ensure you fully
understand what is happening.

Example 1: Guessing an age with ��

	���� and nested ����

 � statement

Problem: A program is required to ask the user to guess an age, the value of which is
stored as a program constant. The program should count the number of tries needed to
guess the correct age and declares whether the guesses are high or low.

Solution:

The algorithm is shown below:

�
 ��� ��� �	
��� �� #	����� �� +

�
 ��

�
 ��K	��� �� �#� ���
 ��� 	���

�
 �� #	��� D �#� �	��	�
����#�

� ����� #	��� B �#� �	��	�
����#�

M
 �����

M
 ��� � �� ��� �	
��� �� #	�����

I
 ���� 	���� #	��� � �#�

4
 ������� ,)�� �	
��� �� ��
�� #	�����,

c� HERIOT-WATT UNIVERSITY 2005

176 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

The Visual Basic program is shown in Code 7.8

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 >�*#�

!�I�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� #	��� �� �#� $���� �� ������

!�� ��� ���#��
 �� � ��������
 � $��� ������� ��� �	
��� ��

!����
��� ������ �� #	��� ��� ������� �#�

&���� >�*#� *� ���#�� � �� !�#���

(�
)���A	��� *� ���#��7 #	����� *� ���#��

#	����� � +

(�

)���A	��� � ��	�.���,A	���
� �#�,�

#	����� � #	����� 5 �

 �)���A	��� B >�*#�)���

"��(������
"����)���A	���3 , �� ��� ��$F ,

���� �)���A	��� D >�*#�)���

"��(������
"����)���A	���3 , �� ��� ��#�F ,

��� �

-��� H����)���A	��� � >�*#�

"��(������
"���� ,L'7�� ��� ,3 >�*#� P , �	� �� ���' ��	 ,7

#	�����3 , �����,

��� %	�

This file (GuessAge.txt), can be downloaded from the course web
site.

Code 7.8

You may wonder why the ������ statement is used, since by default if
)���A	��� � >�*#� is false then)���A	��� must be true within the ��

�����

statement. This is so but when the initial condition is met >�*#� �)���A	��� an error
occurs stating that the value 21 is too low followed by the correct statement as the loop
exits.

The output is shown in Figure 7.10

c� HERIOT-WATT UNIVERSITY 2005

7.4. DO LOOPS 177

Figure 7.10:

Example 2: Use of two Do Until loops to output a number series like Fibonacci
numbers and to validate the input.

Problem: Write a program to output numbers belonging to the Fibonacci series up to a
specified maximum.

Fibonacci was a famous Italian mathematician who identified the following series of
numbers:

�7 �7 �7 �7 �7 47 ��

Successive terms of the series are calculated by adding the previous two numbers.

Solution

The following algorithm will produce the series, given the first two values as input.

�
 (�

�
 ���	� �	
��� �� ���
� �� �	��	�

�
 ���� 	���� ���	� �� $����� ���#�

�
 ���	� �$� �������# ���	��

�
 ��

�
 ��
�	�� �	
����

I
 ������� �	
����

4
 ���� 	���� �	
��� �� ���
� ���� ���� �	��	�

c� HERIOT-WATT UNIVERSITY 2005

178 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 2��������

!�I�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���
�� ��� 	��� �� ���	� ���
���
	
 ���	�

!�� ���
� �� �� ���������
)$� �������# ���	��

!��� ���� ���	�

(�
 6�L�)��
� *� ���#��7 2���� *� ���#��7 %����� *� ���#��

(�
)���� *� ���#��7 &�	�� *� ���#��

"��(������
&��

"��(�������
&��

(�

6�L�)��
� � ��	�.���,C�$
��� ���
� �� �������=,� !E��������� ����'

-��� H���� �6�L�)��
� D +� *�� �6�L�)��
� B� �M�

"��(�������
"���� 6�L�)��
�

2���� � ��	�.���,����� ����� �	
���,�

%����� � ��	�.���,����� ������ �	
���,�

)���� � +

&�	�� � +

"��(������
"���� 2����3 %�����3

(�

)���� � 2���� 5 %�����

2���� �)����

%����� �)���� 5 %�����

"��(������
"���� 2����3 %�����3

&�	�� � &�	�� 5 �

-��� H���� &�	�� � �6�L�)��
� : �� V �

��� %	�

This file (Fibonacci.txt), can be downloaded from the course web
site.

Code 7.9

The program input is restricted to values � 0 and � 15 otherwise the �� 	���� ����

will never terminate until a value within the range is input.

If you find difficulty in following the logic of the program then perform a paper exercise
running through the values of each variable as the program executes. This is called a
dry run and is best done by means of a trace table:

c� HERIOT-WATT UNIVERSITY 2005

7.4. DO LOOPS 179

Instructions First Second Third Output

Starting
Values

1 1

First Loop 2 3 2 1, 1

Second Loop 5 8 5 2, 3

Third Loop 13 21 13 5, 8

The two starting values are 1, 1 which are assigned to variables 2���� and %�����.
Variable)���� then takes on the value of 2���� 5 %����� which is 2. First now takes
on the value of)���� to become 2. Finally the variable %����� takes on the value of
)���� 5 %����� to become 3. The values of 2���� and %����� are now displayed to
give the output:

�7 �7 �7 �7 �7 4

Because the output is 2���� and %����� the value of &�	�� is halved otherwise the
output would be twice that required i.e.

(� H���� &�	�� � �6�L�)��
� : �� � �

Also the value of 6�L�)��
� is decreased by 2 to take into account the first two values
which are output first and are not part of the loop.

Sample program output is shown in Figure 7.11

Figure 7.11:

7.4.4 Review Questions

Q12: Which one of the following statements is true regarding the do while loop?

a) The conditional statement is always satisfied
b) The block of code is entered first before the condition is tested
c) The loop need not be entered if the condition fails at the start
d) The loop terminates when the condition becomes true

c� HERIOT-WATT UNIVERSITY 2005

180 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Q13: Looping structures have several features in common. Which one of the following
is NOT one of these features?

a) Selection
b) Increment
c) Initialisation
d) Condition

Q14: What is the output of the following program fragment that uses a do while loop?

� � +

(�

� � � 5 �

"���� �3

-��� 1���� � B �

a) 0 1 2 3 4
b) 1 2 3 4 5
c) 0 1 2 3 4 5
d) 1 2 3 4 5 6

Q15: In the previous example the do while loop is replaced by a do until loop as
follows:

� � +

(�

� � � 5 �

"���� �3

-��� H���� � B �

a) 0
b) 1
c) 0 1 2 3 4 5
d) 1 2 3 4 5

Q16: What change can be made to the program fragment in the previous question to
give the output 1 2 3 4 5?

a) Change last statement to Loop Until NOT i � 5
b) Change last statement to Loop Until i �= 5
c) Use a for loop with counter variable i
d) Any one of the above

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 181

7.5 Arrays

In the exercises so far you have looked at simple data types, such as ���#�������� and
����#��. The next thing we want to look at is how related data items can be stored
together using arrays. In this topic we will investigate:

1. the requirement for arrays

2. array declaration

Much of this material may be familiar to you already. However, it is necessary to gain
more practice in the use of arrays in order to better prepare you for a later topic on
standard algorithms which makes extensive use of this type of data structure.

A data structure is a way of storing data in a computer in an organised way. One of
the simplest data structures used in computer programming is called an array and is an
example of a static data structure because it is of a fixed size within memory as defined
within the structure of the program.

An array is a list of data items where each item is uniquely identified by its position in
the list. Also, an array is given a name, which is usually related to the group of data it
holds. Some examples might be:

Data Items Array Name

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday

’Days of the week’

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F ’Hexadecimal digits’

�1, �2, 50p, 20p, 10p, 5p, 2p, 1p ’Decimal coinage’

1-Dimensional array

The data items are simply stored in consecutive locations within a block of computer
memory as follows:

�����	
�����	
������	

8�������	
�������	
"����	

�������	

.
-
1
4
6
2
<

$�	������������3%.&
$�	������������3%-&
$�	������������3%1&
$�	������������3%4&
$�	������������3%6&
$�	������������3%2&
$�	������������3%<&

����0�@����� A
Thus the data item ’Tuesday’ is stored in array location Days�of�the�week(2) and the
data item ’Saturday’ as (�����������$��'�M�. Each data item therefore is uniquely
identified by an index or subscript.

Note that the index values are not actual memory addresses as such but simply refer to
the data positions within the array. In Visual BASIC, the first element usually has index
0.

c� HERIOT-WATT UNIVERSITY 2005

182 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Imagine you were to process the average temperature data in Edinburgh for the last
30 days. If each of the day’s temperatures are stored as separate variables you
would require 30 distinct variables, and the storage and manipulation of these variables
becomes difficult.

To overcome the above problem, you can define a variable called ��
�����	�� which
represents not a single value of temperature but an entire set of temperatures.

This is illustrated in Figure 7.12 showing an array structure called temperature and
elements with the subscript ranging from 0 to 8.

- 1 4 6 2 < ; 9

����0������
������

�����������%-& �����������%<&

.

Figure 7.12: Representation of an array and indices

An individual array element can be used anywhere that a normal variable could be e.g.

��
� � ��
�����	����I�

�����#� � ���
�����	����� 5 ��
�����	���M��G�
+

It should be obvious from the above that ��
�����	���� must be declared as a ����.
Can you say why ?

A value can be stored in an array simply by specifying the array element on the left hand
side of the assignment operator (equals sign), e.g.

��
�����	����� � �4
+

assigns the value 18.0 to be stored in element with subscript 2 of the ��
�����	�� array.

��
�����	���I� � ��
�

assigns the value 14.5 to be stored in element index number 7 of the ��
�����	�� array.

This is illustrated in Figure 7.13

- 1 4 6 2 < ; 9

����0������
������

�����������

-9 -6�2

.

Figure 7.13: Representation of the temperature array with temperature(2) = 18.0 and
temperature(7) = 14.5

More generally, an integer variable can be declared and used as the subscript, e.g.

��
� � ��
�����	�����

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 183

which will take the value assigned in element number � of the array ��
�����	�� and
assign it to the variable ��
�.

This means that if you want to access the elements of an array sequentially, you can do it
using a ���

���� loop where the variable for the subscript is automatically incremented
each time you go round the loop. Remember that the subscript variable can only be an
����#��. A ���� is not allowed. The examples within this topic will show you how you
can access an array using a loop. This is the most common way of marching through
an array from beginning to end, and as you will probably use this technique a lot in your
programs.

7.5.1 Declaring arrays

Before you can use an array it must be declared at the beginning of the program with the
other variable declarations. The declaration provides the name of the array, the number
of elements and the data type of the elements.

Like variables arrays can be declared using the Visual Basic keywords (�
7 "	����,
and "������ that determines their scope. If (�
 is used then the array is private to
the procedure in which it is declared. "	���� makes the array visible from anywhere
in the program, and "������ (within the General section of a form or module) makes
the array visible only to the form or module in which it’s declared. but if you use Dim in
the module’s Declarations section, the array will be available to all procedures within the
module.

Note that in Visual Basic, when an array is declared the first element of the array is
usually 0 (zero) if not declared. It’s possible in some versions of Visual Basic, however,
to force the first element of an array to be 1 by using the To statement.

All this will make sense with a few examples:

1. Declare an array called >�6�
� to hold 6 integer values

(�
 >�*������� *� ���#��

2. Declare a string array called 6�
�� to hold 3 string values

(�
 6�
���� �� �� *� %����#

3. Declare a public array called 6	
���� to hold 50 decimal values

"	���� 6	
������J� �� ���#��

Note: Visual Basic.NET does not support declarations using "to".

Errors

Note that you cannot mix the types of data stored in an array. So a single array cannot
be used to store integer, real or string variables together.

The most common error is to attempt to access an array element outwith the declared
bounds e.g. accessing element + or �� of an array with subscript range specified as
�

��.

This type of error is so common that it has been given the name ‘fencepost error’. It is
not a minor error as it can crash the system. If an array has an upper bound of ?J@ and

c� HERIOT-WATT UNIVERSITY 2005

184 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

you attempt to write something to item ?�+@ then you could well be overwriting some
variables which the computer has put in that location. You may be lucky and there is
nothing important there. You may be unlucky. It does not matter whether your program
works or not, it is flawed and incorrect. Sooner or later it will fail. Visual Basic traps this
error and reports it to the user at run-time.

7.5.2 Initialising arrays

In computer programming arrays are used to manipulate data and the actions include:

� initialising the array

� reading data into the array

� searching the array for data items

� sorting data items

For this topic we will focus on the first three only.

Initialising an array simply means setting all the array elements to zero, null or a specified
value.

Suppose we have an integer array called Numbers that can hold 7 values. To set all the
locations to zero we can use the following statements:

)��
���%.&�B�. .����.
)��
���%-&�B�. -����.
)��
���%1&�B�. 1����.
)��
���%4&�B�. 4����.
)��
���%6&�B�. 6����.
)��
���%2&�B�. 2����.
)��
���%<&�B�. <����.

To initialise an array of, say 1000 data elements this would be a very impractical way of
doing it.

A much shorter method would be to use a loop structure as in the following piece of
code:

%�� ���� �� + Q ����������#R

(� 	���� ���� � M

6	
����� ����� � +

 ���� � ���� 5 �

-���

Initialisation is also useful to clear arrays of old data which otherwise might corrupt the
new data being processed.

Initialisation sets all array elements to be identical. The same method can be used to
input data into many. For example to read the days of the week into the array called
Days:

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 185

%�� ���� � + Q ����������#R

(� H���� ���� � M

 ��	� (���� �����

 ���� � ���� 5 �

-���

The following days would be input one by one into the array (���.

,%	����,7 ,>�����,7 ,)	�����,7 ,1��������,7 ,)�	�����,7 ,2�����,7 ,%��	����,

In this case when Index takes the value 0 the first data item - %	���� - will be read in to
the array element (������. Index then takes the value 1 and the process repeats itself
until all the data has been entered.

7.5.3 Examples of using arrays

Example 1 - Using an integer variable to access an array

Problem: How can the array temperature be initialised to zero using a for loop?

Solution: A typical solution to this problem is shown here.

��� ��	�� � + �� �

��
�����	�����	��� � +

���� ��	��

The first time round the loop the variable ��	�� has the value 0 and so the element with
index number 0 of the array ��
�����	�� is set to 0. The next time round the loop ��	��

has been incremented by 1 and has the value 1 and so element index number 1 of the
array will be set to 0 and so on.

This one simple loop replaces 5 lines of code, i.e.

��
�����	���+� � +

��
�����	����� � +

��
�����	����� � +

��
�����	����� � +

��
�����	����� � +

Example 2 - Displaying the contents of an array

Problem: How can the contents of an array be displayed using a ��� loop?

Solution: If you assume you have an array called Store which has 6 elements then you
could use the following code to display the contents of each element.

��� ��	�� � + �� �

"�����,���
��� ,3 ��	��3 ,� ,3 %��������

���� ��	��

For example, if the array Store held the values (3, 12, -4.6, 3.2, 0, -1), see Figure 7.14:

c� HERIOT-WATT UNIVERSITY 2005

186 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Figure 7.14: Contents of a six-element array Store

Then the output would be:

���
��� + � �

���
��� � � ��

���
��� � � :�
M

���
��� � � �
�

���
��� � � +

���
��� � � :�

This time one simple loop replaces 6 lines of code, i.e.

"�����,���
��� + � , %�����+��

"�����,���
��� � � , %��������

"�����,���
��� � � , %��������

"�����,���
��� � � , %��������

"�����,���
��� � � , %��������

"�����,���
��� � � , %��������

Look carefully, and you can see that the array can only be displayed element by element.

You cannot use one statement to print the entire array. For example, it is wrong to say:

"�����%�����

and expect all elements of the array to be displayed.

A single element can be displayed or accessed at random - you are not forced to process
the entire array to do this! Any one of the six lines of code above does the job of printing
out that particular array element, so the code "�����!���
��� � � !7 %��������

outputs the sixth element of the array - the first element being element 0.

Example 3 - Reading user input into an array

Problem: How can data entered by the user at the keyboard be stored directly into the
elements of an array?

Solution: Consider the situation where you want to store 4 user entered integers in an
array called
��'. You could use a ��� ���� loop to prompt and obtain input and to
store the integers in the array, e.g.

��� ��
�� � + �� �

��'���
��� � ��	�.���,"����� ���	�
��'�,�

���� ��
��

For each loop the user will be asked to input a mark. After four marks have been entered
the loop will terminate and the array mark will be storing the four value.

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 187

Using arrays

30 min

�

Æ

�

�

Learning Objective

Initialising, printing and putting data into arrays

Several examples using arrays have been illustrated in the course notes. Incorporate
these program fragments into a working program which can do three things:

1. initialise each element of an array to zero;

2. allow you to input data in the form of floating point numbers directly into the array;

3. print out the contents of the array.

Try to make the program user-friendly by putting relevant information on the screen.

Finally, add a section to the above program which will print the array in reverse order
after it has printed it conventionally.

Indexing arrays

20 min

�

Æ

�

�

Learning Objective

To understand how the index numbers are used in arrays.

An online array interaction is available to help you.

Answer the following questions. Use the arrays interaction on the course web site to
help you find out the answers.

Q17: Begin with an array of 4 elements with a subscript range of 0..3. All values are
initialised to 0, i.e. array = [0, 0, 0, 0]. Set array[1] = 3. What are the arrays contents
now?

a) array = [0, 0, 0, 0]
b) array = [3, 0, 0, 0]
c) array = [0, 3, 0, 0]
d) array = [0, 0, 3, 0]
e) array = [0, 0, 0, 3]
f) none of the above

c� HERIOT-WATT UNIVERSITY 2005

188 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Q18: Using the same array set array[0] = 7. What are the array contents now?

a) array = [0, 0, 0, 0]
b) array = [3, 7, 0, 0]
c) array = [3, 0, 7, 0]
d) array = [7, 3, 0, 0]
e) array = [0, 3, 7, 0]
f) array = [7, 0, 3, 0]
g) array = [0, 7, 3, 0]
h) array = [0, 7, 0, 3]
i) array = [0, 0, 7, 3]
j) none of the above

Q19: Set up a 4 element array with a subscript range of 0..3 with the following values:
array = [3, 6, 2, 8]. What is the value of array[2]?

a) 3
b) 6
c) 2
d) 8
e) none of the above

Q20: In the same array as the previous question, what is the value of the element with
index 0?

a) 3
b) 6
c) 2
d) 8
e) none of the above

Q21: Set up an 8 element array with a subscript range of 0..7, e.g.. array = [8, 23, 5,
19, 3, 0, 7, 52]. Now set array[1] = 12. What are the array contents now?

a) array = [8, 23, 5, 19, 3, 0, 7, 52]
b) array = [12, 23, 5, 19, 3, 0, 7, 52]
c) array = [8, 12, 5, 19, 3, 0, 7, 52]
d) array = [8, 23, 12, 19, 3, 0, 7, 52]
e) array = [8, 23, 5, 12, 3, 0, 7, 52]
f) array = [8, 23, 5, 19, 12, 0, 7, 52]
g) array = [8, 23, 5, 19, 3, 12, 7, 52]
h) array = [8, 23, 5, 19, 3, 0, 12, 52]
i) array = [8, 23, 5, 19, 3, 0, 7, 12]
j) none of the above

Q22: Again, starting with an 8 element array with a subscript range of 0..7 e.g. array =
[8, 23, 5, 19, 3, 0, 7, 52]. Set array[3] = 9, element with index 6 = 11 and array[6] = 4.
What are the array contents now?

a) array = [8, 23, 5, 9, 3, 0, 4, 52]
b) array = [8, 23, 5, 19, 9, 4, 7, 52]
c) array = [8, 23, 5, 9, 3, 4, 7, 52]
d) array = [8, 23, 5, 19, 9, 4, 4, 52]

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 189

e) none of the above

Q23: Set up an array that can hold 4 values with a subscript range of 0..3. Initialise the
array to hold all 0 values. Now set the following values:

� array[1] = 9

� array[2] = 3

What are the contents of the array now? (express in format of array = [3, 2, 5, 0]).

Q24: Set up an array that can hold 10 values with a subscript range of 0..9 Initialise the
array to hold all 0 values. Now set the following values:

� array[4] = 6

� array[8] = 2

� array[1] = 7

� array[7] = 3

What are the contents of the array now? (express in format of array = [3, 2, 5, 0]).

Q25: Write a program that will set each element in an array, called
������, of 10
elements to the value of its index. The contents of the array are then printed out in a
vertical line.

7.5.4 Review Questions

Q26: Initialising a 1-dimensional array means:

a) Setting all locations of an integer array to 0 (zero)
b) Setting all locations of a string array to null
c) Setting all locations of a real array to pre-determined values
d) All of the above options

Q27: The contents of a string array
����#��� contain the following characters in
successive memory locations:

H A P P Y B I R T H D A Y

The programming structure required to produce the above message could best be
achieved using: (choose one)

a) A case statement
b) A for loop
c) A while loop
d) An until loop

c� HERIOT-WATT UNIVERSITY 2005

190 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Q28: An array �	
������ is declared with 6 elements and initialised to contain the
following values:

0 3 0 2 5 9

During a program run the array elements are changed as follows:

�	
������� � M

�	
������� � I

�	
������� � �

The array contents are now:

a) 0 3 0 2 5 9
b) 4 3 0 2 5 9
c) 4 6 0 2 7 0
d) 0 4 6 2 5 7

Q29: An array ���	���� � has been declared in Visual Basic to be of type single and
to hold 5 values. Which one of the following statements would produce an error when
the program is run?

a) value�1(0) = "Hello"
b) value�1(4) = 89.45
c) value�1(1) = 5.6E37
d) value�1(2) = 16

Q30: What is the least positive value of the variable ����� that will cause the following
code to fail?

(�
 ���������J� *� ����#��

(�
 8 *� ����#��7 ����� *� ����#��

�������������� � ������������� 5 ������

a) 9
b) 10
c) 11
d) 12

7.5.5 Worked example programs

A number of worked solutions to problems are given here - make sure you understand
what is going on in these examples. Run these programs for yourself and experiment
with making changes to the code to ensure you understand what is happening. It is
important that you do this - programming is a skill which is learned by doing. Just
reading the examples will not give you that skill.

Since some of the programs can be quite complex they are dealt with in meaningful
chunks and more of this will be dealt with later.

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 191

Example 1 - Calculating the average temperature

Problem: Write a program to access each of the temperatures of a room over 14 days,
which are to be held in an array. Calculate the average temperature during the period.
No display of the results is required.

Solution: First try: A typical solution to this problem (which doesn’t use an array) is
shown in Code 7.10

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 &���	����*����#�)�
�

!���#��
 �� ����	���� �����#� ��
�����	��

!�+�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

(�
 ����� *� %��#��7 �����#� *� %��#��7)�
� *� %��#��

(�
 ��� *� ���#��

����� � +
+ !���������� �����

!���#��
 ��$ �	�� ��� ���	�� ���� ��� %������ �����

2�� ��� � +)� ��

)�
� � ��	�.���,����� ��
�����	�� �� ��� ,�

"��E��	��
"���� ���

����� � ����� 5)�
�

"��*����
"����)�
�

6��� ���

�����#� � ����� G ��

"��/��	��
"���� 2��
��������#�7 ,��������,�

��� %	�

This file (AverageTemp.txt), can be downloaded from the course
web site.

Code 7.10

Second refinement

The program in Code 7.10 does not yet deal with inputting values into the ��
�����	��

array. One solution to this could be to hardcode the ��
�����	�� array values into
the program, although this does not give a lot of flexibility for the user as the values
must be changed in the program and the program recompiled for every new set of
values used. Another would be to allow the user to enter them, which is the method
we will use here. There are other input methods which could be used, such as reading
a file, or downloading the information from a remote monitor, but we will stick to the
straightforward method at the moment.

c� HERIOT-WATT UNIVERSITY 2005

192 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

��� ��� � + �� ��

��� � ��	�.���,����� ��
�����	�� �� ��� ,�

���� ���

Inserting this section of code into code 10 plus the output statements produces the
following Code 7.11

L����� ��������

"������ %	� &�

�����&���'��

!���#��
 &���	����*����#�)�
�

!���#��
 �� ����	���� �����#� ��
�����	��

!�+�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

(�
 %�������� *� %��#��

(�
 ����� *� %��#��7 �����#� *� %��#��7)�
� *� %��#��

(�
 ��� *� ���#��

����� � +
+ !���������� �����

!���#��
 ��$ �	�� ��� ���	�� ���� ��� %������ �����

2�� ��� � +)� ��

)�
� � ��	�.���,����� ��
�����	�� �� ��� ,�

"��E��	��
"���� ���

%��������� �)�
�

����� � ����� 5 %���������

"��*����
"���� %���������

6��� ���

�����#� � ����� G ��

"��/��	��
"���� 2��
��������#�7 ,��������,�

��� %	�

This file (AverageTemp2.txt), can be downloaded from the course
web site.

Code 7.11

As the temperature values are entered they are stored in the array %������. When the
loop terminates the value of �����#� is displayed.

The program output is shown in Figure 7.15

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 193

Figure 7.15:

7.5.6 Simulations

Using arrays makes it easy to simulate many numerical activities that otherwise would
be fairly tedious to do manually. For example analysing the results of tossing a coin 1000
times, throwing die or spinning a roulette wheel can all be dealt with in one-dimensional
arrays. Such simulations make use of random numbers that can be generated between
upper and lower limits for example:

tossing a coin: random values 1 (for heads) or 2 (for tails)

throwing a die: random values between 1 and 6

roulette: random values between 0 and 49.

Random numbers

Visual Basic has a built-in function /6(�� that produces a random number from 0 to
1. The �����
��� function allows the /6(function to start from a seed value and to
produce a series of numbers based on the seed. Random numbers are generated
internally using the computer’s internal clock.

Since the random values produced are real, they must be converted into integers before
being stored in the array. This can be achieved using another function 6)��. Values
are rounded down to the nearest integer.

c� HERIOT-WATT UNIVERSITY 2005

194 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

For example:

 ���I
�� � I

 ���:M
4� � :I

7.5.7 Simulation of tossing a coin

Problem: Write a program to simulate the tossing of a coin up to1000 times determined
by the user and output the number of heads and tails produced.

The program can be done in several sections:

1. Generate random numbers within the range

2. Store results of up to 1000 tosses

3. Display output

The following code segment will generate the random numbers and convert them to
integers within the range 1 and 2:

/����
���

��� ���� � + �� JJJ

C���)���������� � �� ��������

���� ����

This will fill the array called C����)���� with either 1’s or 2s.

Counting heads and tails

With 1000 numbers stored we can now scan the array and count the occurrences of 1’s
and 2s that represent heads and tails.

The following code segment should accomplish this:

2�� ���� � + �� JJJ

 � C����)���������� � � ����

����� � ����� 5 �

����

����� � ����� 5 �

��� ��

���� ����

Finally introduce the code to output the number of heads and tails.

What would you expect the two values to be ? Why ?

Code the program and run it a few times to see if you are correct.

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 195

The full Visual Basic program is shown in Code 7.12

L����� ��������

(�
 C����)������)� �+++� *� ���#��

"������ %	� &�

�����&���'��

!�+�� 2���	���

!"��#��
 �� 2��� 2��'

!)��� ���#��
 ��
	����� ��� ������# �� � ����

(�
 ���� *� ���#��7 ����� *� ���#��7 ����� *� ���#��

(�
 ��	�� *� ���#��

/����
���

"��C����
&��

"��)����
&��

"��)�����
&��

��	�� � ��	�.���,����� �	
��� �� ������,�

2�� ���� � +)� ��	��:�

C����)���������� � ����� N /��� 5 �� !A������� �	
����

6��� ����

2�� ���� � +)� ��	��:� !&�	�� �!� ��� �!�

 � C����)���������� � �)���

����� � ����� 5 �

����

����� � ����� 5 �

��� �

6��� ����

"��C����
"���� ����� !(������ ���	���

"��)����
"���� �����

"��)�����
"���� ��	��

��� %	�

This file (HeadsTails.txt), can be downloaded from the course web
site.

Code 7.12

Note that to make the program easier to follow two ���

���� loops are used but they
could be combined into a single loop.

A typical output is shown in Figure 7.16

c� HERIOT-WATT UNIVERSITY 2005

196 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Figure 7.16:

The program can easily be modified to simulate throwing a die.

Exercise

Amend Code 7.12 to output the results of throwing a die about 50 times.

7.5.8 Testing for Palindromes using an array

Problem: Write a program which will read in a sequence of words. The characters
will be read into an array and the program should then determine if the sequence is a
palindrome.

Note: A palindrome is a sequence of number/characters/words etc. which is the same
when read from either direction.

The following examples are palindromes, the sequence being the same when read from
left to right or from right to left.

� � � � � � �

���
 �
 ���

�� ��� � ��� ��

�
�� � ���� � ����� ����
�

���

This program may seem more complicated than it really is. If you follow the explanation
you will see that by breaking it down into small steps, each of which can be written in

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 197

Visual Basic you will chip away at the problem until it is done.

The solution to this problem assumes that you do not know how many words are going
to be input.

Solution

The program does not know how big a sequence will be entered so an array of
characters larger than required is declared. The program reads in the sequence of
characters one at a time into the array, terminated by a full stop. It also checks that the
array bounds are not breached by testing the condition:

��	�� �� %���

using a ��

$���� loop.

This is important, otherwise an array bounds error will likely occur. The constant %��� is
initially set to 30 but may be altered if large strings are used.

The condition in the $����

�� loop that checks whether "." was the last character
entered is

��������
�&��� �� ,
, !��
���� !��� �K	�� ��!

Once it has completed reading in the characters, you can determine the number of
values read in. This is ��	�� : �, not count since you are not interested in the last
character. All it contains is the "." termination character which you do not want to use in
the rest of the program.

Now you are ready to see whether the string is a palindrome. The array is searched
through comparing the 1st element with the last, the 2nd element with the 2nd last etc.
As soon as you find that they do not match you can terminate the search as you know
that the sequence is not a palindrome. It is not necessary to continue searching the
whole list of numbers as we know what we set out to find out.

Note that you only have to loop for ��	�� �� ���#�� � � as you compare the first half
of the array to the second half. See following Figure 7.17:

. - 1 4 ���������- ������

��������1�������1�������

��������-�����������

�����

Figure 7.17: Comparing array elements for a palindrome

A possible solution is shown in Code 7.13

c� HERIOT-WATT UNIVERSITY 2005

198 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

"������ %	� &�

�����&���'��

!���#��
 "�������
�

!�+�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ���� �� ���	� �����# ��� � ��������
�

&���� ����*���� *� ���#�� � �+

(�
 "���������)� ����*����� *� %����#

(�
 ��������
�&��� *� %����#

(�
 ���#�� *� ���#��7 ��	�� *� ���#��

(�
 ��"�������
� *� .������

��	�� � �

(� 1���� ���������
�&��� BD ,
,� *�� ���	�� B� ����*�����

��������
�&��� � ��	�.���,����� ��	� ����������7��� �� � ��
�

)��
����� �� �	�� ����,�

"����������	��� � ��������
�&���

"��(������
"���� ��������
�&���3 !L	��	� ����������

��	�� � ��	�� 5 �

-���

���#�� � ��	�� : � !�� ����	�� ��� �����
��� $��� ,
, ��

���� ��

!6�$ ����' ��� ��������
�

��"�������
� �)�	�

��	�� � �

(� 1���� ���"�������
�� *�� ���	�� B� ���#�� V ��

 � "����������	��� BD "�����������#�� : ��	���)���

��"�������
� � 2����

����

��	�� � ��	�� 5 �

��� �

-���

 � ��"�������
�)���

"��(������
"���� �, �� � ��������
�,�

����

"��(������
"���� �, �� ��� � ��������
�,�

��� �

��� %	�

This file (Palindrome.txt), can be downloaded from the course
web site.

Code 7.13

c� HERIOT-WATT UNIVERSITY 2005

7.5. ARRAYS 199

Examine the ��

$���� statements carefully. You will see that the conditions are
compound.

� the character read in must not be a full stop AND there must still be space left in
the array

� if both these conditions are fulfilled, then the loop continues

� if either one or the other condition fails, then the loop terminates.

The �� $���� ���"�������
�� ��� ���	�� �� ���#�� � �� statement tests whether
you have gone halfway through the array AND whether the boolean variable
’��"�������
�’ has been set to false.

This needs a bit more explanation:

� notice that we initialised ��"�������
� to ��	� at the beginning of the program

� if you look at the output statements right at the bottom of the code, you can see
that if ��"�������
� is still true, then the array is a palindrome

� if ��"�������
� has been set to ����� at any point, then the array is not a
palindrome

� this is what a boolean flag is for. You set it to a state - here it is either ��	� or
����� - and you use this value to see whether a certain condition still holds true

� so what might set ��"�������
� to �����? It is the code inside the $����

�� loop
which compares the first and last items

� if they are not the same, the boolean flag is set to �����. Otherwise nothing
happens

� then the second, and second from last are compared..... and so on.

In terms of loop tests this is probably about as complicated as it gets. If you do not
understand it this time around, just be patient - you will probably find that you need to
code something like this yourself in the future and you can come back to this example.
By actually doing it, the difficulties seem much less than by reading it as you are doing
now.

When you do code it successfully you will results like those shown in Figure 7.18

c� HERIOT-WATT UNIVERSITY 2005

200 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

Figure 7.18:

There are other methods, probably much simpler, of writing programs to test for
palindromes. However it is essential that you understand the use of arrays since they
are important data structures in all fields of computing. You will see more in the use of
arrays in the final topic.

7.5.9 More Array Examples

Comparing arrays and encoding the results

30 min

Declare three 20-element arrays, X, Y, Z. Write a program to read 20 integers into each
of the two integer arrays 8 and <. The program will prompt the user to enter the values
into each of the arrays. The program will then compare each of the elements of 8 to the
corresponding element in <. Then, in the corresponding element of a third array W, store
the following values, Table 7.2.

Table 7.2

W Element
Value

Condition

1 if the element in 8 is larger than the element in <

0 if the element in 8 is equal to the element in <

-1 if the element in 8 is less than the element in <

Then print out a three column table displaying the contents of the arrays 8, < and W.
Make up your own test data and write down in three columns the number you input for
X, the number you input for Y and the result you got for Z

Comparing arrays - extension

30 min

If you found the previous exercise absurdly easy, then you can follow up with this one.

c� HERIOT-WATT UNIVERSITY 2005

7.6. SUMMARY 201

Extend the above program by adding two further columns to the output giving each line
five columns. This is what you add: (column 4) a count of the number of elements of 8
that exceed <, and (column 5) a count of the number of elements of 8 that are less than
<.

Sentence completion - arrays

On the Web is a interactivity. You should now complete this task.

7.6 Summary

The following summary points are related to the learning objectives in the topic
introduction:

� understand and be able to use the ’for ..next’ structure;

� understand and be able to use the ’do..while’ structure and variant;

� understand and be able to use the do..until structure and variant;

� how to declare 1-D arrays;

� initialise a 1-D array;

� manipulate data held in 1-D arrays.

7.7 End of topic test

An online assessment is provided to help you review this topic.

c� HERIOT-WATT UNIVERSITY 2005

202 TOPIC 7. HIGH LEVEL LANGUAGE CONSTRUCTS 2

c� HERIOT-WATT UNIVERSITY 2005

203

Topic 8

Procedures and Standard
Algorithms

Contents

8.1 Introduction . 205

8.2 Modularity . 206

8.3 Procedures and Functions . 206

8.3.1 Procedures . 207

8.3.2 General Procedures . 208

8.3.3 Parameter passing . 209

8.3.4 Call by Value . 210

8.3.5 Call by Reference . 214

8.3.6 Review Questions . 218

8.4 Functions . 219

8.4.1 Pre-defined functions . 220

8.4.2 User-defined functions . 220

8.5 Review Questions . 224

8.6 Standard Algorithms . 225

8.6.1 Linear Search . 226

8.6.2 Counting Occurrences . 230

8.6.3 Finding Maximum and Minimum . 233

8.7 Summary . 236

8.8 End of topic test . 236

Prerequisite knowledge

Before studying this topic you should be able to:

� describe and exemplify pre-defined functions.

� recognise appropriate use of the following standard algorithms:

– input validation;

– find min/max;

– count occurrences;

– linear search.

204 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

Learning Objectives

� understand and be able to use procedures in programs

� understand and be able to use functions and user-defined functions in programs

� understand how the use of procedures and functions aids modularity of programs

� understand parameters and how they are passed (in,out,in/out)

� understand parameter call by value and call by reference

� be able to describe in pseudocode and implement standard algorithms: linear
search, counting occurrences and finding maximum/minimum

c� HERIOT-WATT UNIVERSITY 2005

8.1. INTRODUCTION 205

Revision

Q1: A piece of programming code contains a validation routine. This is to ensure:

a) That the program produces the correct output
b) That the input data is within specified limits
c) That the output is within specified limits
d) That the input data is restricted to characters only

Q2: Programming languages usually contain a collection of pre-defined functions.
Which one of the following statements is true?

a) Programming time can be saved
b) Functions produce a single value
c) Functions can be used with or without parameters
d) All of the above

Q3: A linear search is performed on the following data contained in a 1-D array:

Glasgow, Edinburgh, Falkirk, Perth, Inverness, Dumfries, St Andrews, Dundee

How many comparisons are made before the search item Dumfries is found?

a) 4
b) 5
c) 6
d) 7

Q4: What is meant by the term standard algorithm?

a) Universal code to solve all problems
b) A sequence of instructions that can be used to solve a common problem
c) Code that makes a program more reliable
d) Any program written in a high level language

Q5: Which standard algorithm is used in all of these?

Linear search, counting occurrences, finding maximum/minimum

a) Linear search
b) Counting occurrences
c) Finding maximum
d) Finding minimum

8.1 Introduction

This final topic introduces further modular programming concepts. Programs are built up
from individual blocks of code that represent a procedure or function. The main program
will then consist of a series of procedure/function calls which makes any program more
readable and easier to maintain.

The fairly complex issue of parameters and parameter passing is covered in detail and
exemplified by working solutions.

c� HERIOT-WATT UNIVERSITY 2005

206 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

Finally three common algorithms for Higher Grade Software Development are discussed
with exemplar code for each supplied.

8.2 Modularity

You will recall from Topic 3 that an important aspect of the design phase was the idea
of refining a complex program by progressively breaking it down into smaller, easier-to-
solve units (top-down design with step-wise refinement). Each of these units, called
modules or program blocks, can be independently coded in a high level language
and then amalgamated to form the complete program. The use of structure charts
emphasise this modular design and also the relationship between all the modules in the
software system.

Modularity was the basis of "structured programming", a concept which evolved in the
60s and 70s when procedural or imperative languages came to the fore. Today it is still
an important aspect of modern programming techniques and even lends itself to current
object-oriented programming.

In comparison to commercial software the programs that you will be writing in Visual
Basic will be relatively short and you might not see the need to use modular techniques.
The Windows operating system, for example contains well over 30 million lines of
code. Just think of trying to program this in one large block of code! This would be
an impossible task without the system being decomposed into many smaller, discrete
units that can be easily modified and more readily debugged and compiled. Your own
programs, however small they may be, should embody the principles of modularity.

Visual Basic is an event driven programming language where the programming is done
in a graphical environment. Users can click on various objects where each object
is programmed independently to be able to respond to user actions. A Visual Basic
program is, therefore, modular, being made up of many subprograms, each having its
own program code that can be executed independently. These subprograms are called
procedures and functions.

8.3 Procedures and Functions

Procedures and functions provide a means of producing structured programs, not
only in Visual Basic but in other programming languages as well. The more complex a
program becomes the more reason to employ strategies to make it easier to read and
maintain. Procedures and functions help in this respect by breaking up what would be
extensive lines of intricate code into more meaningful and logical sections.

As a consequence:

� the repetition of lines of code are avoided. Rather than repeating the same
operations several different times in a program, the code can be placed in a
procedure or function. The procedure is then called as many times as necessary
without re-writing the code

c� HERIOT-WATT UNIVERSITY 2005

8.3. PROCEDURES AND FUNCTIONS 207

� it allows testing of the procedure code to take place in isolation from the main
program. Each functional unit can be written independently by programming
teams, making this part of the software development process more efficient

� debugging of the main body of the program is simplified since each procedure can
be individually tested

� procedure code can be saved and re-used in future projects. Module libraries,
for instance are repositories for useful chunks of code that can be accessed by
programmers who could save time by using such code, instead of ’re-inventing the
wheel.’

Procedures and functions are somewhat similar in their structure. They both consist of:

� a heading

� a declaration part (where necessary)

� an action part (a compound statement)

A procedure or function is activated by a call from the main program, after which the
procedure or function executes its block of code and then terminates.

The flow of data between procedures, functions and the main program block is
accomplished by the use of parameters, which will be discussed later.

8.3.1 Procedures

Visual Basic offers a variety of procedure types. The two that concern us here are:

� event procedures

� general procedures.

Up to now most of the programming code you have seen has been made up of event
procedures that activate sections of code when, say a command button is pressed.
These procedures are named by Visual Basic by concatenating the name of the object
code and the name of the event according to the syntax:

%	� &�

����&���'��

���

��� %	�

You will recognise this code which ends a Visual Basic program.

c� HERIOT-WATT UNIVERSITY 2005

208 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

8.3.2 General Procedures

A general procedure, unlike an event procedure, is user-defined with its block of code
being called from the main program.

The basic structure for a procedure is:

%	� "�����	��6�
� ����
�� ����
������

(�����������

%����
����

��� �	�

The name, "�����	��6�
� or identifier, is what is used when the procedure is called
and the name conforms to the same rules of naming variables. Data is passed to
and from the main program using the procedure ����
����� or ��#	
���� enclosed
in parentheses. Not all procedures however need to have parameters. The declarations
and statements follow an identical pattern to normal programming constructs.

Procedures are normally declared ������� and their scope is limited to other procedures
and variables within the current form.

Here, to get us started is a simple little procedure that prints blank lines on a form. This
might be useful for putting spaces into program output.

"������ %	� .���'-����

"����

"����

"����

��� %	�

This could be called, in the action part of the main block, as:

&��� .���'-����

Its use in a program could look like this:

"������ %	� ��

�����&���'��

!���#��
 �����

"�����,>����#� �

,�

&��� .���'-����

"�����,>����#� �

,�

��� %	�

"������ %	� .���'-����

"����

"����

"����

��� %	�

As it stands, .���'-���� isn’t very well structured. As programmers, we should always
be a little wary when we find ourselves repeating code. It might be better to put the

c� HERIOT-WATT UNIVERSITY 2005

8.3. PROCEDURES AND FUNCTIONS 209

"���� statements within a loop structure. The following refinement should produce a
more acceptable program:

"������ %	� .���'-����

��� � � � �� �

"����

6��� �

��� %	�

The program is still not very flexible. We should be able to tell the procedure how many
blank lines to output.

This is achieved using parameters and we will come back to this section of code.

Exercise

A user is asked to input numerical values between 1 and 30. Write a section of code
as a procedure to validate user input between these two values. Show how it would be
called from the main program.

8.3.3 Parameter passing

Parameter passing is the main mechanism for transferring information between
programs and sub procedures in Visual Basic. Parameters can be classified into various
types, depending on how they deal with data values during a procedure call.

Other than using global variables, parameter passing using local variables is the way in
which information is transmitted to and / or from called procedures in a program. The
formal parameters can behave in one of three ways:

1. They can pass information to a sub program

2. They can receive information from a sub program

3. They can both send and receive information.

These three methods are described as:

1. IN mode or use of an IN parameter

2. OUT mode or use of an OUT parameter

3. IN/OUT mode or use of an IN/OUT parameter.

This is probably shown best in the following diagram:

c� HERIOT-WATT UNIVERSITY 2005

210 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

�������!������!"��
��
����������%�>�
>��&

"������������������>�
>��
�����#����������

������$������!"��
����������0>�	>�C

������������������0>�	>�C

�
����

0 �)�����

������

	 (�������

�
����

C �)+(�������
������

In the diagram the declared procedure has three formal parameters �7 � and � while
the calling procedure has actual parameters �7 � and �. During a procedure call the
formal and actual parameters will interact as follows:

IN mode: information regarding � is passed to �

OUT mode: returning information from � to �

IN/OUT mode: information regarding � is passed to � where it is updated and returned
to �

The differences between the three modes will become clearer after we study some
examples.

The information that is passed can occur by two methods:

1. Call by value

2. Call by reference

8.3.4 Call by Value

Call by value is the most common parameter passing mechanism and is also the easiest
to understand.

Recalling the section of code that outputs blank lines we can now introduce a
value parameter to make the procedure much more flexible.

Here is the Visual Basic code (Code 8.1)

"������ %	� &�

����&���'��

!>������� ���#��
 �����

"�����,>����#� �

,�

&��� .���'-�������

"�����,>����#� �

,�

��� %	�

c� HERIOT-WATT UNIVERSITY 2005

8.3. PROCEDURES AND FUNCTIONS 211

"������ %	� .���'-�����.�E�� 6	
��� �� ���#���

(�
 ��	�� *� ���#��

2�� ��	�� � �)� 6	
����

"����

6��� &�	��

��� %	�

Code 8.1

By calling .���'-������� in the main program the formal parameter Number in the
procedure declaration block is passed the actual parameter value 5. The procedure
code is executed and then terminates.

Note that the formal parameter is preceded by the Visual Basic keyword .�E�� to
indicate a value parameter. It is essential to declare whether the parameter is called
by value or by reference.

The following worked example will help you understand passing by value:

Example 1: Use of procedures with value parameters

Problem: Write a program that outputs the square and square root of a number that is
input by the user. This number will be passed to each of the procedures.

Solution

The following algorithm uses two procedures with value parameters:

� %�� 	� ���������

� E������� 	��� ���	�

� ���� �	� ������	�� ,�K	���, !������	�� �

� ���� �	� ������	�� ,�K�/���, !������	�� �

� ������� ���	���

M ��� ���#��

c� HERIOT-WATT UNIVERSITY 2005

212 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

The full Visual Basic program is shown in Code 8.2.

L����� ��������

"������ %	� &�

�����&���'��

!>��� "��#��

!"��#��
 �� 2��� 2��'

!���� 2���	��� �++�

!)��� ���#��
 ���
������� ��� 	�� �� ���	� ����
�����

(�
 *��	��E��	� *� ���#��

(�

*��	��E��	� � ��	�.���, ��	� � ���	� ���$��� � ��� �++,�

-��� H���� �*��	��E��	� D� �� *�� �*��	��E��	� B� �++�

&��� %K	����*��	��E��	�� !&��� ������	��

"��(������
"����

&��� %K�/����*��	��E��	�� !&��� ������	��

��� %	�

"������ %	� %K�/����.�E�� �	
��� *� ���#��� !"�����	�� �����������

(�
 /��	�� *� %��#��

/��	�� � %K���	
����

"��(������
"���� ,)�� �K	��� ���� �� ,3 �	
���3 , �� ,3 2��
���/��	��7

,2����,�

��� %	�

"������ %	� %K	����.�E�� �	
��� *� ���#��� !"�����	�� �����������

(�
 /��	�� *� ���#��

/��	�� � �	
��� S �

"��(������
"���� ,)�� �K	��� �� ,3 �	
���3 , �� ,3 /��	��

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (ValueParameter.txt), can be downloaded from the
course web site.

Code 8.2

Examine this code carefully. Make sure you understand its structure. The fixed format
command is to output the square root to two decimal places.

Program output is shown in Figure 8.1

c� HERIOT-WATT UNIVERSITY 2005

8.3. PROCEDURES AND FUNCTIONS 213

Figure 8.1:

In this program the formal parameter �	
��� was passed the value 7 in each of the two
procedures. Consider the following diagram showing the procedure %K	���:

!��������������������
�%"����&�"#'����(�����$��)

!�������������
�%"����&*��"��+��"�)

'��	����*��"��+��"��%;&
����������������

����������%�"#'��&

Once the value I has been sent to the procedure %K	��� the code is run and the
procedure then terminates.

Points to note:

1. The original value of the variable *��	��E��	� in the main program remains
unchanged. Any changes made by the procedure to the value passed are local
to the procedure and not passed back to the main program. In other words
the procedure can only modify a copy of the variable value and not the variable
*��	��E��	� itself. You will see more of this later.

2. the number of actual and formal parameters must be the same; in this there was
only one.

3. each parameter must be the same data type for the procedure call to work.

c� HERIOT-WATT UNIVERSITY 2005

214 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

In a procedure call the word ���� may be omitted with only the procedure name and
parameters required. For example:

&��� %K	����*��	��E��	�� becomes Square *��	��E��	�

This notation will be used from now on in all programs.

8.3.5 Call by Reference

One of the disadvantages of call by value is that a copy of the actual parameter is always
made in order to produce the formal parameter during the procedure call.

A reference parameter does not pass a value of a variable but instead passes the
address of the variable.

Call by reference is used when information has to be passed out from a procedure to the
main program. Here the variables inside the procedure body are allowed to reference
the memory location of the actual variable that passed it. This means that as the actual
parameters change as do the formal parameters.

It is important that you understand the difference between value and reference
parameters.

Consider the following procedure codes where one uses call by value and the other call
by reference:

"������ %	� 6��&���#��.�E�� 6	
��� *� ���#���

6	
��� � 6	
��� 5 �+

��� %	�

"������ %	� &���#��.�/�� 6	
��� *� ���#���

6	
��� � 6	
��� 5 �+

��� %	�

If they are now executed within a program we can see the difference to the variable Test
in the main program by calling each procedure.

The full Visual Basic program is shown in Code 8.3

L����� ��������

"������ %	� &�

�����&���'��

(�
)��� *� ���#��

)��� � �+

"��(����
"����)���

&���#�)���

6��&���#�)���

"��(����
"����)���

��� %	�

"������ %	� 6��&���#��.�E�� 6	
��� *� ���#���

6	
��� � 6	
��� 5 �+

c� HERIOT-WATT UNIVERSITY 2005

8.3. PROCEDURES AND FUNCTIONS 215

��� %	�

"������ %	� &���#��.�/�� 6	
��� *� ���#���

6	
��� � 6	
��� 5 �+

��� %	�

Code 8.3

Figure 8.2 shows the value of the variable Test before and after each call of the
procedures.

Figure 8.2:

Each procedure call produces the correct value of 20 for)��� but only in call by
reference is this value passed back to the main program. In call by value the main
program knows nothing about the local changes made within the procedure.

The following diagram should explain what is happening:

!��������������������
�,��$��&�-	����"#'��)

!�������������
�,��$��&��(�)

%��(�&������	
�����������������

	����������
�#��-���������

��(��.�/0

c� HERIOT-WATT UNIVERSITY 2005

216 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

The process of events is as follows:

1. The procedure call &���#������� is initiated;

2. The procedure declaration &���#� is accessed;

3. Procedure &���#� now accesses the memory location of variable)��� and gets
the numerical value 10. Formal parameter �	
��� now has the value 10.

4. Procedure &���#� code is activated and both �	
��� and)��� � �+.

Points to note:

In this case a change is made to the program variable)��� since it is the address of the
variable that is referenced and not a copy. Since the formal parameter and the actual
parameter have now been assigned the same memory address this means that any
changes to the formal parameter are passed back to the main program.

It is important that you understand the differences between call by value and call by
reference.

Don’t worry if you have found the material in this section difficult to follow first time round.

Remember!

� if a parameter is used only to transmit a value to a procedure then make it a value
parameter

� if a parameter represents a result that is produced by the procedure to be used
elsewhere in the program then make it a reference parameter.

Call by reference is the default condition for Visual Basic.

Note for Visual Basic.Net users the default condition is call by value.

Example 2: Program using reference parameters

Problem: A user enters two numbers at the keyboard. Write a program that swaps the
positions of the numbers.

Solution

Consider the following procedural algorithm:

� ������� ���������

� A��6	
�����6	
����7 6	
�����

� .���'-�������

� �$���6	
����7 6	
�����

Notice that we are using the procedure .���'-����, the first procedure we met at the
start.

c� HERIOT-WATT UNIVERSITY 2005

8.3. PROCEDURES AND FUNCTIONS 217

The full Visual Basic program is shown in Code 8.4

L����� ��������

"������ %	� ������#��&���'��

(�
 6	
���� *� ���#��7 6	
���� *� ���#��

A��6	
���� 6	
����7 6	
����

.���'-�������

�$�� 6	
����7 6	
����

��� %	�

"������ %	� .���'-�����.�E�� 6	
 *� ���#���

(�
 ��	�� *� ���#��

2�� ��	�� � �)� 6	

(������
"����

6��� ��	��

��� %	�

"������ %	� �$���.�/�� ���	�� *� ���#��7 .�/�� ���	�� *� ���#���

(�
 ��
� *� ���#��

(������
"���� �,6	
���� ������ �$�� � ,�3)������3 ���	��3 , ,3���	��

��
� � ���	��

���	�� � ���	��

���	�� � ��
�

.���'-�������

(������
"���� �,6	
���� ����� �$�� � ,�3)������3 ���	��3 , ,3 ���	��3

��� %	�

"������ %	� A��6	
�����.�/�� 6	
� *� ���#��7 .�/�� 6	
� *� ���#���

6	
� � ��	�.���, ��	� ����� ���	�,�

6	
� � ��	�.���, ��	� ������ ���	�,�

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (RefParameter.txt), can be downloaded from the course
web site.

Code 8.4

The first call of procedure A��6	
���� produces the formal values for 6	
� and 6	
�

through user input. These values are passed to the actual values 6	
���� and 6	
����.

.���'-������� produces two clear lines before output of results

c� HERIOT-WATT UNIVERSITY 2005

218 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

The values are now swapped:

��
� � �+

���	�� � �+

���	�� � ��
�

Notice the procedure .���'-������� is nested within procedure A��6	
����.

Results are displayed via procedure A��6	
����.

Typical output is shown in Figure 8.3

Figure 8.3:

8.3.6 Review Questions

Q6: The use of procedures in a program offers many advantages to the programmer.
Which one of the following would represent such an advantage?

a) They must have meaningful names
b) Repetition of lines of code are avoided
c) Procedures can be nested within procedures
d) They can work with or without parameters

Q7: The structure of a procedure consists of three main parts. Which one of the
following is not one of these parts?

a) A heading
b) A declaration
c) An action
d) A footer

c� HERIOT-WATT UNIVERSITY 2005

8.4. FUNCTIONS 219

Q8: Parameters can be classified as being IN, OUT and IN-OUT. Which one of the
following statements is true regarding these parameters?

a) byVal is used for IN-OUT parameters
b) byRef is used for IN-OUT parameters
c) byRef can only be used for IN parameters
d) byVal can only be used for OUT parameters

Q9: In a procedure call by reference, which one of the following is true?

a) A reference parameter is an example of an IN parameter
b) Anything that happens to the formal parameter happens to the actual parameter
c) The memory address of the formal parameter is passed
d) All of the above

Q10: What would be the output of the following Visual Basic code?

(�
 � *� ���#��7 � *� ���#��

� � �

� � M

"���� �7 �3

���	�� �7 �

"���� �7 �

%	� ���	���.�/�� �	
� *� ���#��7 �	
� *� ���#���

�	
� � �	
� 5 �+

�	
� � �	
� : �

��� %	�

a) 5 6 5 3
b) 5 6 3 5
c) 5 6 15 3
d) 5 6 3 15

8.4 Functions

A function is similar to a procedure, except it returns a value to the calling code. The
basic structure for a function is:

2	������ �	������6�
� �����
������ *� (���)���

(�����������

�	��6�
� � ����������

��� 2	������

Since a function returns a value it is used within expressions. The function name must,
in the action part of the function, be assigned the value that is to be returned.

c� HERIOT-WATT UNIVERSITY 2005

220 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

8.4.1 Pre-defined functions

Some built-in Visual Basic functions have been used in many of the programming
examples up to now. Table 8.1 shows some of the more common pre-defined functions:

Table 8.1:

Name Function Example

ABS(X) Returns the absolute value of X ABS(5.6) = 5

INT(X) Returns truncated integer part of X INT(34.5) = 34

SQR(X) Returns the square root of X SQR(25) = 5

RND Generates a random number
between 0 and 1

X = (100*RND) will give
random numbers from 1
to 100

TAB(X) Outputs at print position ’X’ Print TAB(5)

SPC(X) Outputs number of spaces between
last printed position and the next

Print SPC(3)

ASC("X") Returns the ASCII value of a
character "X"

Print ASC("A") returns 65

CHR$(X) Returns an ASCII value into a
character

Print CHR$(68) returns
"D"

VAL("X") Returns the value of string "X" VAL("76923") = 76923

STR$(X) Returns the string of value X STR$(1234) = "1234"

8.4.2 User-defined functions

User-defined functions work in exactly the same way as Visual Basic a pre-defined
functions and extend the range of programming possibilities.

Here, as a simple example, is a little function that simply doubles the value sent to it.

�	������ ��	��� ��	
��� �� ����#��� �� ����#��

��	��� � �	
��� N �

��� �	������

The function would then be called as

(�	���6	
��� � ��	�����+�

We could combine this in a section of a program with a procedure to get a valid (positive)
number:

!"��#��
 #��6	
����

(�
 �	
��� ����#��

#��E����6	
��� ��	
����

����� �,)$��� ���� �� ,7 ��	��� ��	
�����

�	� ������	�� #��E����6	
��� �.�/�� �	
��� �� ����#���

��

c� HERIOT-WATT UNIVERSITY 2005

8.4. FUNCTIONS 221

�	
��� � ���	�����,����� � �	
���9 ,

���� 	���� ��	
��� D +�

��� �	�

�	������ ��	��� ��	
��� �� ����#����� ����#��

��	��� � �	
��� N �

��� �	������

Exercise 1

Code the above section of code into a Visual Basic program and run it with different
values.

Example: Use of a function

Problem: A program has to be written that uses a function to output the area of a circle,
given the radius.

Solution

Consider the following algorithm:

� ������� ���������

� �	������ ����

� ���� � �� N ����	� S �

� ������� �	��	�

The Visual Basic program is seen in Code 8.5

L����� ��������

&���� "� *� %��#�� � �
����J�

"������ %	� &�

�����&���'��

(�
 /���	� *� ���#��

"��/��	��
"����)�����3 ,/���	�,3)����M�3 ,*���,

"��/��	��
"����

2�� /���	� � �)� �+

"��/��	��
"����)���M�3 /���	�3)����M�3 2��
���*����/���	��7 ,2����,�

6��� /���	�

��� %	�

2	������ *����/���	�� *� %��#��

!)��� �	������ $��� ����	���� ���� �� ������

*��� � "� N /���	� S �

��� 2	������

"������ %	� ���"��#��
�&���'��

���

��� %	�

This file (FunctionArea.txt), can be downloaded from the course
web site.

Code 8.5

c� HERIOT-WATT UNIVERSITY 2005

222 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

Exercise 2

Rewrite this procedure as a function. It will return a valid integer. It will no longer need
a parameter.

%	� #��E����6	
��� �.�/�� �	
��� *� ����#���

(�
 �	
���L' *� �������

��

"���� �, ��	� � �	
��� ,�

�	
���L' � �	
��� D� +

�� ��� �	
���L' ����

����� �,)�� �	
���
	�� �� #������ ���� +,�

��� ��

���� 	���� �	
���L'

��� �	�

Answer

�	������ #��E����6	
��� *� ����#��

(�
 �	
���L' *� �������

(�
 �	
��� *� ���#��

��

����� �, ��	� � �	
��� ,�

�	
���L' � �	
��� D� +

�� ��� �	
���L' ����

����� �,)�� �	
���
	�� �� #������ ���� +,�

��� ��

���� 	���� �	
���L'

#��E����6	
��� � �	
���

��� �	������

Exercise 3

Write a program to add two validated numbers together. First use the sum function
and the #��E����6	
��� procedure. Then write another program using the sum and
#��E����6	
��� functions.

Answer

Using the procedures:

!���#��
 �	
�

(�
 ����� *� ����#��7 ������ *� ����#��

%	� #��E����6	
��� �.�/�� �	
��� *� ����#���

(�
 �	
���L' *� �������

��

����� �, ��	� � �	
��� ,�

�	
���L' � �	
��� D +3

�� ��� �	
���L' ����

c� HERIOT-WATT UNIVERSITY 2005

8.4. FUNCTIONS 223

������,>�'� �� �������� ,�

��� ��

���� 	���� �	
���L'

��� �	�

�	������ �	
 �� �� ����#��7 � �� ����#����� ����#��

�	
 � � 5 �

��� �	������

!>��� ���#��

#��E����6	
��� �������

#��E����6	
��� ��������

������,)�� ����� �� ,7 �	
 ������7 ��������

Using the functions:

!���#��
 �	
�3

(�
 ����� �� ����#��7 ������ �� ����#��

�	������ #��E����6	
��� �� ����#��

(�
 �	
���L' �� �������

(�
 �	
��� �� ����#��

��

����� �, ��	� � �	
��� ,�

�	
���L' � �	
��� D +

�� ��� �	
���L' ����

������,>�'� �� �������� ,�

���� 	���� �	
���L'

#��E����6	
��� � �	
���

��� �	������

�	������ �	
 �� �� ����#��7 � �� ����#����� ����#��

�	
 � � 5 �

��� �	������

!>��� ���#��

����� � #��E����6	
���

������ � #��E����6	
���

����� �,)�� ����� �� ,7 �	
 ������7 ��������

c� HERIOT-WATT UNIVERSITY 2005

224 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

Turning a procedure into a function

Rewrite this procedure as a function. It will return a valid integer. It will no longer need
a parameter.

�	� #��E����6	
����.�/�� �	
��� �� ����#���

(�
 �	
���LU �� .������

��

�	
��� � ��	�����, ��	� � �	
���,�

�	
���LU � �	
��� D +

�� ��� �	
���LU ����

"�����,)�� �	
���
	�� �� #������ ���� +,�

��� ��

���� 	���� �	
���LU

��� �	�

Using procedures or functions

Write a program to add two validated numbers together. First use the sum function
and the getValidNumber procedure. Then write another program using the sum and
getValidNumber functions.

Functions

On the Web is a interactivity. You should now complete this task.

8.5 Review Questions

Q11: Which one of the following statements regarding a function is false?

a) A function does not need to be declared
b) A function does not have parameters
c) A function returns a single value
d) A function can not call itself

Q12: Below are four functions. Which one is not available as a predefined function in
Visual Basic?

a) Inputbox
b) Val
c) Square
d) Rnd

c� HERIOT-WATT UNIVERSITY 2005

8.6. STANDARD ALGORITHMS 225

Q13: Look at the Visual Basic statements below that use built-in functions. Which one
represents a valid function call?

a) SQR(x) = x
b) y = ABS(-5)
c) 65 = CHR$("A")
d) z = SQR("z")

8.6 Standard Algorithms

An algorithm is a finite sequence of steps which, when followed, will accomplish a
particular task.

The term algorithm derives from the name of the mathematician, Mohammed ibn-
Musa al-Khwarizmi (c.825AD) who was a mathematician and part of the royal court
in Baghdad. Al-Khwarizmi’s work is the likely source for the word algebra as well.

Figure 8.4: Cunieform tablet

There is ample proof that the use of ’algorithms’ was evident around 2000 - 3000 BC
by the ancient Sumerians whose work was inscribed on clay tablets using a cunieform
cipher.

Translating this text revealed mathematical rules and astronomical data written in
sexagesimal notation (base 60) from which remains 360 degrees for circular measure,
60 minutes per hour, 60 seconds per minute and so on.

A computer program can be viewed as an elaborate algorithm. In mathematics and
computer science, an algorithm usually means a procedure that solves a problem.

One major objective of this topic is to introduce you to common algorithms that have
been tried and tested by programmers with knowledge of good algorithm design.

Many algorithms appear over and over again, in program after program. These are
called standard algorithms or common algorithms.

Think about a word processing package which uses an algorithm to find all occurrences
of a particular word in a block of text, or a spreadsheet package which uses an algorithm
to find the maximum value in a range of cells. These packages make use of standard
algorithms and it is worthwhile for every programmer to know them. When implemented

c� HERIOT-WATT UNIVERSITY 2005

226 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

these standard algorithms may become key components in a module library.

This section introduces 3 common algorithms used by programmers. Namely:

1. linear search

2. counting occurrences

3. finding maxima and minima.

You need to have prior understanding of arrays, as examples given rely upon knowledge
of accessing and manipulating such structures.

8.6.1 Linear Search

One task which computers frequently perform is to search through lists. For example,
looking up a telephone number in a database, finding and replacing a word in a text file
or looking for a particular stock item in a warehouse etc. The simplest way of doing this
is to perform a linear search also called a sequential search, where the search begins
at the first item in a list and continues searching through each item of the list in turn.

Linear search is the simplest search method to implement and understand. Starting
with an array holding say, 10 numbers with a pointer indicating the first item the user
inputs a search key. Scanning then takes place from left to right until the search key is
found, if it exists in the list. Look at the list below:

/1 2 34 51 67 8 87 68 77 10

Suppose the search key is 76.

1. 16 is compared to 76. Not the key so pointer moves on one place

2. 9 is compared to the key. Not equal so pointer moves on

3. 34 is compared to key. Not equal so pointer moves on

4. 76 compared with key. Success! Key found at position 4 in the list.

/1 2 34 51 67 8 87 68 77 10

One method is to search the entire list from start to finish and stop only when the end of
the list is reached. This algorithm is shown below:

c� HERIOT-WATT UNIVERSITY 2005

8.6. STANDARD ALGORITHMS 227

Linear search 1 - searching the entire list

�
 ���
�� ��� 	��� ��� ��� ������ ���	�

�
 ����� �� ��� ����� ���
��� �� ��� ����

�
 �� $���� ��� ��� �� ����

�
 �� ��� �	����� ���
��� BD ������ ���	� ����

�

��� ���� ��� ���� ���
��� �� ��� ����

M ���� �	��	� ������ ���	� ��� ��������

I ��� ��

4
 ����

This is not a very efficient way of doing things. Why bother to search the remainder of a
list when the item has been found? There are instances when you will want to search
the entire list e.g. if you wish to replace all words in a list that begin with ’L’ to words that
begin with ’P’ then the search would stop when you reach the end of the list.

The counting occurrences algorithm that you will meet next stops when the key is found.

The algorithm makes use of a complex condition and a boolean variable:

Linear search 2 - stopping when the search value is found

�
 ��� ��	�� �� �����

�
 ���
�� ��� 	��� ��� ��� ������ ���	�

�
 ����� �� ��� ����� ���
��� �� ��� ����

�
 �� $���� ���� ��� �� ����� ��� ���	�� �� ������

�
 �� ��� �	����� ���
��� � ������ ���	� ����

M
 ��� ��	�� �� ��	�

I
 �������
����#�

4
 ����

J

��� ���� ��� ���� ���
��� �� ��� ����

�+
 ��� ��

��
 ����

��
 �� ��� ��	�� ����

��
 �������
����#�

��
 ��� ��

The full Visual Basic program is shown in Code 8.6. Examine it carefully to see how it
operates, based on the algorithm. The output of this can be seen in Figure 8.5

L����� ��������

(�
 2�	�� *� .������

(�
 %�����U�� *� ���#��7 "������ *� ���#��7 2��� *� ���#��

(�
 -������� *� E������

"������ %	� &�

�����&���'��

!"��#��
 -������%�����

!�J�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

c� HERIOT-WATT UNIVERSITY 2005

228 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

!)��� ���#��
 $��� ������
 � ������ ������ ��

!�� ����� ������# �M �����
 ����#��� ���$���

!��� ���	�� � ��� JJ

%��	� !&��� ������	���

"��	�����-��� -�����

����������������
 %�����U��

%�������������
 "������7 %�����U��7 -�����

��� %	�

"������ %	� %��	��� ! ��������� ���������

/����
��� !��� ����� �	��	� �����

2�	�� � 2����

"��-���
&��

"��/��	��
&��

"��/��	��
"����

"������ � +

��� %	�

"������ %	� "��	�����-����.�/�� -������ !2��� ����� $���

(�
 2��� *� ���#�� !�M �����
 �	
����

2�� 2��� � +)� ��

-����2���� � ���JJ N /��� 5 �

"��-���
"���� -����2����3

6��� 2���

��� %	�

"������ %	� ����������������
�.�/�� %�����U��� !H��� ���	� ������ ���

%�����U�� � ��	�.���, ��	� ������ '��,�

��� %	�

"������ %	� %�������������
�.�E�� "������7 .�E�� %�����U��7 .�/�� -������

(� 1���� �"������ B� ��� *�� �6�� 2�	���

 � -����"������� � %�����U��)���

2�	�� �)�	�

"��/��	��
"���� ,%����� ���
 ,3 %�����U��3 , ��	�� �� ��������

,3 "������

����

"������ � "������ 5 �

��� �

-���

 � �6�� 2�	���)���

"��/��	��
"���� ,%����� ���
,3 %�����U��3 ,�� ��� �� ����F,

��� �

��� %	�

c� HERIOT-WATT UNIVERSITY 2005

8.6. STANDARD ALGORITHMS 229

"������ %	� &�

�����&���'��

���

��� %	�

This file (Linear.txt), can be downloaded from the course web site.

Code 8.6

Figure 8.5:

The linear search is not a very efficient strategy since each array element has to be
compared with search key until a match is found. For example it can be shown that for
an array holding 1000 items an average of 500 comparisons will be made.

If the data items are sorted with order, however, then the search time can be improved
using a more complex algorithm called binary search.

Despite the large number of comparisons required to find an entry it is probably the
fastest technique for small arrays. It is also the most simplistic in terms of coding. It may
also be the only method to search larger, unordered tables of data.

Searching a list of names

30 min

Write a program that will search a list of names for a given name. You should consider
the following tests where the name:

� does not appear in the list

� appears at the start of the list;

� appears at the end of the list;

� appears within the list.

c� HERIOT-WATT UNIVERSITY 2005

230 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

8.6.2 Counting Occurrences

Programs often have to count occurrences. Examples include counting the number of:

� students who achieved particular marks in an examination

� rainfall measurements greater than a particular level

� words equal to a given search value in a text file.

The basic mechanism is simple:

1. a counter is established

2. a list is searched for the occurrence of a search value

3. every time the search value occurs, the counter is incremented

You should notice that counting occurrences examines the entire list and so the
algorithm is a variation of the linear search algorithm described above. The general
counting occurrences algorithm is:

Counting occurrences - general algorithm

�
 ��	���� � +

�
 ���
�� ��� 	��� ��� ��� ������ ���	�

�
 ��� ������� �� ����� �� ����

�
 ��

�
 ��
���� ������ ���
 �� ��������������

M
 �� �K	�� ����

I
 �����
��� ��	��

4
 ��� ��

J

��� �� ���� �������� �� ��� ����

�+
 	���� ��� �� ����

��
 ������ �	
��� �� ���	�������

c� HERIOT-WATT UNIVERSITY 2005

8.6. STANDARD ALGORITHMS 231

Below is the full Visual Basic implementation.

L����� ��������

(�
 %�����U�� *� ���#��7 "������ *� ���#��7 2��� *� ���#��

(�
 L��	������ *� ���#��

(�
 -������� *� E������

"������ %	� &�

�����&���'��

!"��#��
 &�	����# L��	�������

!�J�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ������
 � ������ ��

!�� ����� ������# �M �����
 ����#��� ���

!�	��	� ���	������� �� �� ���	� ���	�

%��	� !&��� ������	���

"��	�����-��� -�����

����������������
 %�����U��

%�������������
 "������7 %�����U��7 L��	������7 -�����

��� %	�

"������ %	� %��	��� ! ��������� ���������

/����
��� !��� ����� �	��	� �����

"��-���
&��

"��/��	��
&��

"��-���
"����

"������ � +

L��	������ � +

��� %	�

"������ %	� "��	�����-����.�/�� -������ !2��� ����� $���

(�
 2��� *� ���#�� !�M �����
 �	
����

2�� 2��� � +)� ��

-����2���� � ����J N /��� 5 �

"��-���
"���� -����2����3

6��� 2���

��� %	�

"������ %	� ����������������
�.�/�� %�����U��� !H��� ���	� ������ ���

%�����U�� � ��	�.���, ��	� ������ ���
 �� ��	��,�

��� %	�

"������ %	� %�������������
�.�E�� "������7 .�E�� %�����U��7

.�E�� L��	������7 .�/�� -������

(�

 � -����"������� � %�����U��)���

L��	������ � L��	������ 5 �

c� HERIOT-WATT UNIVERSITY 2005

232 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

��� �

"������ � "������ 5 �

-��� H���� �"������ D ���

"��/��	��
"���� ,%����� ���
 ,3 %�����U��3 , ��	�� ,3 L��	������3

,��
�� �� ��� ����
,

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (Occurrences.txt), can be downloaded from the course web site.

In this case the array is filled with values from 1 to 49 in order to increase the chances
of multiple occurrences.

The output of this can be seen in Figure 8.6

Figure 8.6:

Counting names in a list

45 min

Write a program that will count the number of times a search name appears in a list of
names. Use the algorithm you have seen in the counting occurrences animation to help
you. Remember to construct appropriate test cases in advance of coding. You should
consider tests which:

� check for boundary conditions e.g. occurrence of the search value at the beginning
or end of the list;

� no occurrences of the search value within the list;

c� HERIOT-WATT UNIVERSITY 2005

8.6. STANDARD ALGORITHMS 233

� a single occurrence of the search value;

� multiple occurrences of the search value;

8.6.3 Finding Maximum and Minimum

Computers are often used to find maximum and minimum values in a list. For example,
a spreadsheet containing running times for videos might make use of a maximum
algorithm to identify the video with the longest running time, or a minimum algorithm
to identify the shortest running time. A database containing personal details of club
membership might make use of maximum and minimum algorithms to identify the oldest
or youngest member. You can think of a few more for yourself. Clearly these algorithms
are extremely useful and very widely used.

To find a maximum, we set up a variable which will hold the value of the largest item that
has been found so far, usually the first data element. If an element in the array exceeds
this working maximum, we give the working maximum that value.

Such algorithms sometimes have to return the index number of the largest or smallest
element, and sometimes the actual maximum or minimum value. The algorithms to
return the maximum and minimum values are shown below:

Finding the maximum

�
 ���
���
	
 �� ����� ���
 �� ��� ����

�
 ��� �	����� �������� �� �

�
 ��

�
 ��
����
���
	
 �� ���
 �� �	����� ��������

�
 ��
���
	
 B ���
 ����

M
 ���
���
	
 �� ���

I
 ��� �	����� �������� �� ���� �������� �� ��� ����

4
 ���� 	���� ��� �� ����

J
 ������
���
	
 ���	�

Finding the minimum

�
 ���
���
	
 �� ����� ���
 �� ��� ����

�
 ��� �	����� �������� �� �

�
 ��

�
 ��
����
���
	
 �� ���
 �� �	����� ��������

�
 ��
���
	
 D ���
 ����

M
 ���
���
	
 �� ���

I
 ��� �	����� �������� �� ���� �������� �� ��� ����

4
 ���� 	���� ��� �� ����

J
 ������
���
	
 ���	�

c� HERIOT-WATT UNIVERSITY 2005

234 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

The full Visual Basic program for maximum is shown below:

L����� ��������

(�
 %�����U�� *� ���#��7 "������ *� ���#��7 2��� *� ���#��

(�
 >���
	
 *� ���#��

(�
 -������� *� E������

"������ %	� &�

�����&���'��

!"��#��
 >���
	

!�J�� 2���	��� �++�

!"��#��
 �� 2��� 2��'

!)��� ���#��
 $��� ������
 � ������ ��

!�� ����� ������# �M �����
 ����#��� ���

!�	��	� ���
���
	
 ���	�

%��	� !&��� ������	���

"��	�����-��� -�����

%����������
�� "������7 >���
	
7 -�����

��� %	�

"������ %	� %��	��� ! ��������� ���������

/����
��� !��� ����� �	��	� �����

"��-���
&��

"��/��	��
&��

"��-���
"����

"������ � +

>���
	
 � +

��� %	�

"������ %	� "��	�����-����.�/�� -������ !2��� ����� $���

(�
 2��� *� ���#�� !�M �����
 �	
����

2�� 2��� � +)� ��

-����2���� � ����++ N /��� 5 �

"��-���
"���� -����2����3

6��� 2���

��� %	�

"������ %	� %����������
���.�E�� "������7 .�E�� >���
	
7 .�/�� -������

>���
	
 � -����"�������

(�

"������ � "������ 5 �

 � >���
	
 B -����"�������)��� !����
���
	

>���
	
 � -����"�������

��� �

-��� H���� �"������ D ���

"��/��	��
"���� ,)��
���
	
 ���	� �� ��� ���� �� ,3 >���
	

c� HERIOT-WATT UNIVERSITY 2005

8.6. STANDARD ALGORITHMS 235

��� %	�

"������ %	� &�

�����&���'��

���

��� %	�

This file (Maximum.txt), can be downloaded from the course web site.

The above code can easily be modified to return the minimum value.

c� HERIOT-WATT UNIVERSITY 2005

236 TOPIC 8. PROCEDURES AND STANDARD ALGORITHMS

Finding the maximum and minimum value in a list of integers

Write a program that will find the maximum and minimum values in a list of integers.
Remember to construct appropriate test cases in advance of coding. You should
consider the following tests:

� a normal test where maximum and minimum are as expected;

� a test where the maximum and minimum values are the same.

Sentence completion - algorithms

On the Web is a sentence completion task on algorithms. You should now complete this
task.

8.7 Summary

The following summary points are related to the learning objectives in the topic
introduction:

� understand and exemplify modularity in programming;

� understand and exemplify user-defined procedures and functions in programming;

� understand procedure/function parameters and how they are used;

� understand and exemplify parameter passing methods;

� understand and exemplify the following standard algorithms:

1. linear search;

2. counting occurrences;

3. finding maximum/minimum.

8.8 End of topic test

An online assessment is provided to help you review this topic.

c� HERIOT-WATT UNIVERSITY 2005

GLOSSARY 237

Glossary

Acceptance testing

Testing of software outside the development organisation and usually at the client
site.

Adaptive maintenance

Takes place when a program’s environment changes, for example a different
operating system.

Algorithm

A detailed sequence of steps which, when followed, will accomplish a task.

Alpha testing

Testing of software within the development organisation.

Beta testing

Testing of software outside the development organisation using clients or selected
members of the public.

Bottom-up design

A method of program refinement that starts with individual modules and builds
them up into a complete program.

Boundary testing

Running a program with test data that represents the extreme upper and lower
values. Within this range the program should operate normally.

Bugs

A bug is a program error.

Bytecode

This is produced by JavaScript and is a form of machine code that runs under the
Java virtual environment. The latter is freeware and enables any computer to run
Java programs

Client

The person or group that initiates the development process by specifying a
problem .

Compiler

A program that translates a complete high level language program into an
independent machine code program.

Concatenation

Joining of Visual Basic string variables to make longer strings using the ’&’
operator.

Corrective maintenance

Correction of previously undetected errors during development that is now
apparent after installation of the software on the client site.

c� HERIOT-WATT UNIVERSITY 2005

238 GLOSSARY

COTS

Commercial Off The Shelf software. An alternative software development system
that allows programmers to purchase ready-made software. Can be an expensive
option.

Data

Unstructured information. A collection of numeric or alphanumeric characters
which can be processed by a computer. Raw data is meaningless to people.

Database

An organised and structured collection of related data.

Data modelling

A process used in object oriented languages that identifies objects, how they relate
to one another and their manipulation.

Debugging

The detection, location and removal of errors in a program.

Declarative language

Programmers use this type of language to specify what the problem is rather than
how to solve it by writing code. The language uses facts and rules to express
relationships.

Desk checking

Akin to a dry run where the running of a program is checked without a computer.

Development team

Generic description of the personnel involved in developing the software solution.

Dry run

A pen and paper exercise to debug a program.

Efficient

an efficient program is one which does not make unnecessary demands on
processor time, memory or other system resourses.

Event driven

A system that responds to an external event such as mouse click or a key press.

Event driven language

An event driven language that is designed to handle external events like interrupts,
mouse clicks etc

Exceptions testing

Testing the robustness of a program by entering silly data - character data instead
of numeric data, excessive values etc.

Executable code

Independent machine code that can be run without translation.

c� HERIOT-WATT UNIVERSITY 2005

GLOSSARY 239

Exhaustive testing

Complete testing of a program under every conceivable condition. An expensive
method time-wise.

Explicit declaration

Each variable, for example is declared unambiguously by the user so there is much
less room for error in running programs Visual basic.

Feedback

A looping system where information is fed back in to a computer system. Previous
output becomes new input.

Fit for purpose

The finished program runs to specification and is robust and reliable.

Function

A block of code like a procedure but a value is returned when the function is used.

Functional language

A language that utilises the evaluation of expressions rather than the execution of
commands. It is based on the use of functions from which new functions can be
created.

Functional specification

This will detail how the developed program will behave under specified conditions.

General purpose language

The language can be used to program solutions covering a broad range of
situations.

High-level language

A language designed to be easily understood by programmers. They use
commands and instructions based on English words or phrases.

Human computer interface

Allows the program to interact with the outside world. The interface is the only part
of the program that users see.

Implicit declaration

If a variable, for example is not fully declared by the user then it is given default
attributes by the Visual Basic language.

Independent test group

Testing of software by a group out with the development team.

Inheritance

The sharing of characteristics between a class of object and a newly created sub
class. This allows code re-use by extending an existing class.

c� HERIOT-WATT UNIVERSITY 2005

240 GLOSSARY

Intermediate code

A form of compiled code that is specifically produced for a target computer.

Internal commentary

The use of comments within source code to describe what it does.

Internal documentation

The use of comments within source code to describe what it does.

Interpreter

A program that translates a high level program line by line, which it then tries to
execute. No independent object code is produced.

Iterative

An iterative process is one that incorporates feedback and involves an element of
repetition.

Jackson Structured Programming

A diagrammatic design method for small programs that focuses on sequence,
selection and iteration.

Java

A language designed by Sun Microsystems. The language is portable because
Java interpreters are available for a wide range of platforms.

Keyword

A reserved word with a special meaning in a computer language. For example for,
if, dim in Visual Basic.

Legal contract

A contract set up between client and development team, the details of which are
set out in the requirements specification which becomes legally binding should
anything go wrong.

Lexical analysis

Part of the compilation process where the source code is tokenised into symbols
and stored in the symbol table.

Linear search

A standard algorithm that perform a sequential search on a list of data items.

Machine code

Native computer code that can be understood without translation.

Macro

A block of code that automates a repetitive task. Rather like a batch file they
are normally created within an application then run by activating a key press
combination or clicking on an icon.

c� HERIOT-WATT UNIVERSITY 2005

GLOSSARY 241

Maintainable

software which is written and documented in a way which makes it easy for
programmers to correct errors, add new features or adapt the software.

Maintenance

The upkeep of a program by repair and modification.

Methodology

A technique involving various notations that enables the design of software to be
implemented.

Module library

A module library includes code for standard algorithms that can be re-used by
programmers.

Normal operation

Running of a program under expected normal conditions.

Object

A data item that can be manipulated by a computer system, for example a
database record or a file.

Object oriented design

A method that centres on objects and the operations that can be performed on
them.

Object-oriented language

An object-oriented computer language like Java that uses objects rather than
actions and data rather than logic. An object is represented by a class that can be
extended to involve inheritance.

Optimised

Refinement of code to make it more efficient.

Parameter

An argument of a procedure or function that represents a local variable.

Parameter passing

The mechanism by which data is passed to and from procedures and the main
program.

Perfective maintenance

Takes place when a system has to be enhanced in some way e.g. program run
faster.

Portable

The ability of a program to run on different machine architectures with different
operating systems.

c� HERIOT-WATT UNIVERSITY 2005

242 GLOSSARY

Problem oriented

The focus is on the problem and how it is to be solved rather than on the hardware
on which the program will run.

Problem specification

A document outline of what is to be solved in terms of programming a solution to
a given problem.

Procedural language

Also known as imperative languages because the programs follow a sequence of
steps until they terminate. The code is made up of procedures and functions.

Procedure

A block of code that, when called from within a program will perform a specific
action.

Process

An activity that is performed by a piece of software,

Programming team

A section of the development team responsible for the coding, testing,
implementation and maintenance of the software.

Project manager

A member of the development team who is responsible for the supervision of the
project. The main tasks are to keep the project on schedule and within budget.

Pseudo-code

A notation combining natural language and code used to represent the detailed
logic of a program i.e. algorithmic notation.

RAD

Rapid Application Development. An alternative software development model that
uses event driven languages for its implementation.

Recursion

A programming technique that is iterative in that a procedure or function can call
itself. It is very demanding of computer memory.

Reference parameter

Here the address of the actual parameter is accessed by the formal parameter.
Information is passed OUT from the procedure to the main program.

Reliable

A program is reliable if it runs well and is never brought to a halt by a design flaw.

Repetition

A process that repeats itself a finite number of times or until a certain condition is
met.

c� HERIOT-WATT UNIVERSITY 2005

GLOSSARY 243

Requirements specification

A document describing what the system must be able to do in order to meet user
requirements.

Robust

A program is robust if it can cope with problems that come from outside and are
not of its own making.

Scripting language

Used for writing small programs or scripts that enhances existing software. The
best example is JavaScript which is used to enhance web pages.

Semantics

Semantics is the meaning of a statement in a given language.

Simulation

Replication of a process by computer that would not be possible to do manually.
For example studying the projected traffic analysis of an airport or throwing a die
many hundreds of times.

Software development environment

The high level language programming environment that offers tools and techniques
to design and implement a software solution.

Software development process

A series of stages involving defined methods to produce a software project
according to an initial specification.

Software engineering

A sphere of computing where the emphasis is on the development of high quality,
cost effective software produced on schedule and within agreed costs.

Source code

The code for a program written in a high level language. This code is then
translated into machine code.

Special purpose language

Languages designed for specific tasks such as prolog for artificial intelligence or
C for writing operating systems.

Specification

A document outlining the program requirements set by the client.

SSADM

Structured Analysis and Design Model. An alternative to the waterfall model that
deals only with the analysis and design phases of software development.

Standard algorithm

An algorithm that appears over and over again in many programs. Also called
common algorithms.

c� HERIOT-WATT UNIVERSITY 2005

244 GLOSSARY

Stepwise refinement

Similar to top-down design of sectioning a large and complex system into smaller
and more easily manageable components.

Structure charts

A diagrammatic method of designing a solution to solve a software problem.

Structured data

Data that is organised in some way, for example an array or database.

Structured listing

Program listing clearly showing the modules involved complete with commentary
and meaningful variable and procedure names.

Stub

A temporary addition to a program used to assist with the testing process.

Symbol table

Part of the compilation process where the tokens created by the lexical analysis
phase are stored.

Syntax

Syntax means structure or grammar of a statement in a given language

Systems analyst

The person responsible for analysing and determining whether a task is suitable for
pursuit using a computer. They are also responsible for the design of the computer
systems.

Systems developer

Another name for a systems analyst.

Systems specification

An indication of the hardware and software required to run the developed program
effectively. It will be the basis of subsequent stages which prepare a working
program.

Technical guide

Documentation intended for people using a system containing information on how
to install software and details system requirements such as processor, memory
and backing storage.

Test data

Data that is used to test whether software works properly and that it is reliable and
robust.

Testing

Running a program with test data to ensure a program is reliable and robust.

c� HERIOT-WATT UNIVERSITY 2005

GLOSSARY 245

Test log

A record of how a program responds to various inputs.

Test plan

A strategy that involves testing software under verifying conditions and inputs.

Top-down design

A design approach of sectioning a large and complex system into smaller and
more easily manageable components.

Trace facility

A method used to debug a program by tracing the change in values of the variables
as the program is run.

Traditional model

An alternative name for the waterfall model that details the seven stages of
program development.

Unusual user activity

Running a program with exceptional data.

User guide

A document intended for people using a system containing information on how to
use the software.

Value parameter

Here a copy of the actual parameter is passed in to the formal parameter.
Information is passed IN to the procedure form the main program.

Waterfall model

One of the earliest models for software development that incorporates 7 stages
from analysis to implementation and maintenance.

c� HERIOT-WATT UNIVERSITY 2005

246 HINTS

Hints for activities

Topic 6: High Level Language Constructs 1

Calculating minutes

Hint 1: This problem naturally breaks up into four sections:

1. declare the variables;

2. get input;

3. calculate the minutes;

4. output results.

The input must consist of three numbers, the days, the hours and the minutes. So you
need three variables to hold these figures. What will you name them? What type will
they be (integer, real...)?

How do you work out the total number of minutes from these figures? You have to design
a section of code to do this

Hint 2: There are 60 minutes in one hour and 24 hours in a day, hence 720
(24*60=1440) minutes in a day.

Hint 3: For example: days = 1, hours = 12, minutes = 15,

Total number of minutes = 2175.

days = 3, hours = 4, mins = 5

total minutes = 4565

days = 17, hours = 10, mins = 0

total mins = 25080

Calculating the number of digits in a number

Hint 1: It helps the user to know what type of number to type in, and what range of
numbers is allowable before they type the wrong input! This should be in addition to any
checks you do on the length of the number.

Calculating Leap Years

Hint 1: shows several years and indicates whether they are leap years or not. This data
could be used to test your program. Table 8.2

Table 8.2: Calculation of leap years

Year Is a Leap Year?

1900 No

1996 Yes

2000 Yes

2001 No

c� HERIOT-WATT UNIVERSITY 2005

ANSWERS: TOPIC 2 247

Answers to questions and activities

2 Features of Software Development Process

Revision (page 11)

Q1: c) Design, implementation, documentation, evaluation

Q2: b) Certain stages of the process are re-visited to make sure all is well

Q3: d) User and Technical Guides

Q4: a) Program listing

Answers from page 14.

Q5: c) The evolution of software systems was disorganised

Q6: d) Analysis, design, testing, evaluation

Q7: a) The model will be more realistic

Q8: d) All of the above

Q9: b) Enable personnel to discuss progress

Answers from page 16.

Q10: a) top-down design

Q11: c) requirements specification

Q12: d) All of the above

Q13: b) Robust

Q14: a) a description of what the software must do

Answers from page 20.

Q15: c) Testing finds faults and debugging removes them

Q16: c) It makes the program run more reliably

Q17: b) the final program meets the original specification

Answers from page 25.

Q18: c) It can make running a program a less irritable experience

Q19: b) The requirements

Q20: c) Assembler

Q21: d) Source code

c� HERIOT-WATT UNIVERSITY 2005

248 ANSWERS: TOPIC 2

Answers from page 28.

Q22: b) Testing is done within the organisation

Q23: a) The program is tested by the clients

Q24: a) The input of silly data

c� HERIOT-WATT UNIVERSITY 2005

ANSWERS: TOPIC 3 249

3 Design notation, data flow and evaluation

Revision (page 37)

Q1: c) It is very useful in complex program designs

Q2: d) They represent thedesign in a visual way

Q3: b) English and high level language code

Q4: c) Maintenance

Q5: c) exceptional data

Answers from page 43.

Q6: a) Structure charts

Q7: b) It is breaking complex problems down into smaller units

Q8: c) Stepwise refinement

Q9: a) Think more about the solution to the problem

Q10: d) The designer can concentrate on a small part of the problem at a time

Answers from page 47.

Q11: a) To determine that the system meets the specification

Q12: b) Output statements at key points in the code

Q13: c) Testing can demonstrate the absence of errors

Q14: c) Design input routines that will not crash when presented with unexpected data

Q15: a) They could remain hidden until the program is run under all conditions

Answers from page 51.

Q16: c) The program can cope with mistakes that the user might make

Q17: d) All of the above

c� HERIOT-WATT UNIVERSITY 2005

250 ANSWERS: TOPIC 4

4 Personnel

Answers from page 58.

Q1: c) The group who will purchase the software

Q2: d) Benefit the organisation in some way

Q3: d) The systems analyst is responsible for the entire project

Q4: a) Allow the systems analyst to produce a clear specification of the problem

Q5: b) The project manager

Answers from page 62.

Q6: d) All of the above

Q7: a) They report directly to the project manager at all stages of programming

Q8: b) Programmers will tend to test only within the functionality of their own code

Q9: d) The project manager

Q10: c) Testing is done by external groups on a variety of computer platforms

c� HERIOT-WATT UNIVERSITY 2005

ANSWERS: TOPIC 5 251

5 Languages and Environments

Revision (page 67)

Q1: d) All of the above

Q2: b) A compiler produces object code for a whole program in one operation

Q3: d) Syntax error

Answers from page 72.

Q4: b) Languages have to be adapted so new versions are released

Q5: c) Basic, Algol, Pascal, Comal

Q6: d) Moderation

Q7: c) Visual Basic

Q8: d) They are low level languages

Answers from page 81.

Q9: a) Programs have no pre-defined pathway

Q10: d) They describe a problem rather than how to solve it

Q11: c) Macros automate repetitive tasks

Q12: d) Changing audio CDs

Answers from page 85.

Q13: c) A compiler can produce more efficient object code

Q14: a) Looping structures have to be interpreted each time they are entered

Q15: a) Computers can only understand machine code

c� HERIOT-WATT UNIVERSITY 2005

252 ANSWERS: TOPIC 6

6 High Level Language Constructs 1

Revision (page 89)

Q1: b) The FOR..NEXT loop

Q2: d) Answer = 5 + 8 * (3 - 2)

Q3: b) NOT 1 = FALSE

Q4: c) 6

Q5: d) All of the above

Answers from page 105.

Q6: c) 17.5%Vat

Q7: a) It is easier for programmers to locate and fix errors

Q8: d) Integer

Q9: c) Integer (long)

Practice in using simple variables (page 115)

Q10: The variable �	
���� has not been declared. There will be no output since the
variable sum has no value and has not been declared. Also the "���� statement is
wrong

Answers from page 119.

Q11: c) Global

Q12: d) All three statements above

Q13: b) They are hidden from other procedures and functions

Q14: c) The extent to which the variable can be ’seen’ by the rest of the program

Q15: d) It can have only the values true or false

Answers from page 137.

Q16: d) NOT

Q17: a) 11

Q18: c) The execution of program statements in order, from beginning to end

Q19: b) The expression is TRUE when both conditions being tested are TRUE

Q20: c) Assignment

c� HERIOT-WATT UNIVERSITY 2005

ANSWERS: TOPIC 7 253

7 High Level Language Constructs 2

Revision (page 155)

Q1: c) Data items of the same type are grouped together

Q2: d) Days(3) = "Wednesday"

Q3: c) 1, 8, 3, 9, 5, 6

Answers from page 165.

Q4: d) Control loop variable is increasing in value by a constant amount determined
by the programmer

Q5: d) For loopCounter = (3*4.16) to (5*5.6) step 1

Q6: a) Calculating the total number of marks entered at a keyboard

Q7: a) Triangle

Q8: c) 18

Answers from page 173.

Q9: The value of � within the loop is never incremented. It will therefore always have a
value of 0, which is less than 100, and hence this will produce an infinite loop which will
never terminate. The program will therefore never end.

The code could be altered to include an increment, i.e.

� � +

�� $���� � B �++

���	� � �N�

� � � 5 �

����

Q10: There is no ���� to end the ��

$����

Add loop at the end of the code:

� � �

�� $���� � B� �+

��������

� � � 5 �

����

Q11: A typical solution to the problem is shown here.

��
 � �� ����#��7 �	
 �� ����#��

�	
 � +

� � +

c� HERIOT-WATT UNIVERSITY 2005

254 ANSWERS: TOPIC 7

�� $���� � B� �+

�	
 � �	
 5 �

� � � 5 �

����

You should obtain a value of 210 for the sum of all numbers between 0 and 20 inclusive.

Answers from page 179.

Q12: c) The loop need not be entered if the condition fails at the start

Q13: a) Selection

Q14: b) 1 2 3 4 5

Q15: b) 1

Q16: d) Any one of the above

Indexing arrays (page 187)

Q17: c) array = [0, 3, 0, 0]

Q18: d) array = [7, 3, 0, 0]

Q19: c) 2

Q20: a) 3

Q21: c) array = [8, 12, 5, 19, 3, 0, 7, 52]

Q22: c) array = [8, 23, 5, 9, 3, 4, 7, 52]

Q23: array = [0, 9, 3, 0]

Q24: array = [0, 7, 0, 0, 6, 0, 0, 3, 2, 0]

Q25: The program fragment which will help you to do this is:

��� ��+ �� J

��������� � �

Answers from page 189.

Q26: d) All of the above options

Q27: b) A for loop

Q28: d) 0 4 6 2 5 7

Q29: a) value�1(0) = "Hello"

Q30: b) 10

c� HERIOT-WATT UNIVERSITY 2005

ANSWERS: TOPIC 8 255

8 Procedures and Standard Algorithms

Revision (page 205)

Q1: b) That the input data is within specified limits

Q2: d) All of the above

Q3: b) 5

Q4: b) A sequence of instructions that can be used to solve a common problem

Q5: a) Linear search

Answers from page 218.

Q6: b) Repetition of lines of code are avoided

Q7: d) A footer

Q8: b) byRef is used for IN-OUT parameters

Q9: b) Anything that happens to the formal parameter happens to the actual parameter

Q10: c) 5 6 15 3

Turning a procedure into a function (page 224)

�	������ #��E����6	
��� �� ����#��

(�
 �	
���L' �� �������

(�
 �	
��� �� ����#��

��

�	
��� � ��	�����, ��	� � �	
���,�

�	
���LU � �	
��� D +

�� ��� �	
���LU ����

"�����,)�� �	
���
	�� �� #������ ���� +,�

��� ��

���� 	���� �	
���LU

#��E����6	
��� � �	
���

��� �	������

Using procedures or functions (page 224)

Using the procedures:

!���#��
 �	
�

��
 ����� �� ����#��7 ������ �� ����#��

�	� #��E����6	
��� �.�/�� �	
��� �� ����#���

��� �	
���L' �� �������

c� HERIOT-WATT UNIVERSITY 2005

256 ANSWERS: TOPIC 8

��

�	
��� � ��	�����, ��	� � �	
���,�

�	
���LU � �	
��� D +

�� ��� �	
���LU ����

"�����,>�'� �� ��������,�

��� ��

���� 	���� �	
���LU

��� �	�

�	������ �	
 �� �� ����#��7 � �� ����#��� �� ����#��

�	
 � � 5 �

#��E����6	
��� �����

#��E����6	
��� ������

"���� �,)�� ����� �� ,3 �	
������7 ��������

��� �	������

Using the functions:

!���#��
 �	
�

��
 ����� �� ����#��7 ������ �� ����#��

�	������ #��E����6	
��� �� ����#��

��
 �	
���L' �� �������

��
 �	
��� �� ����#��

��

�	
��� � ��	�����, ��	� � �	
���,�

�	
���LU � �	
��� D +

�� ��� �	
���LU ����

"�����,>�'� �� ��������,�

��� ��

���� 	���� �	
���LU

#��E����6	
��� � �	
���

��� �	������

�	������ �	
 �� �� ����#��7 � �� ����#����� ����#��

�	
 � � 5 �

��� �	������

!
��� ���#��

����� � #��E����6	
���

������ � #��E����6	
���

"���� �,)�� ����� �� ,3 �	
������7 ��������

Answers from page 224.

Q11: a) A function does not need to be declared

Q12: c) Square

Q13: b) y = ABS(-5)

c� HERIOT-WATT UNIVERSITY 2005

	Introduction to Software Development Process
	Introduction
	Overview
	Real-life programs and classroom programming
	Computing disasters
	Information sources on computing disasters
	Well planned programs
	Summary
	End Of Topic Test

	Features of Software Development Process
	Introduction
	Preamble
	The need for iteration
	Analysis in closer detail
	Design in closer detail
	Implementation in closer detail
	Testing in closer detail
	Documentation in closer detail
	Evaluation in more detail
	Maintenance in closer detail
	Weaknesses of the Waterfall Model
	Summary
	End of topic test

	Design notation, data flow and evaluation
	Introduction
	Tools and Techniques
	Design methodologies and notations
	Test Data
	Structured Listing
	Error Reporting
	Module libraries
	Software characteristics
	Summary
	End of topic test

	Personnel
	Introduction
	Personnel
	The Client
	The Project Manager
	The Systems Analyst
	The Programming Team
	Independent Testing Group
	Summary
	End of topic test

	Languages and Environments
	Introduction
	Programming Languages
	Classification of High Level Languages
	Procedural / Imperative languages
	Declarative languages
	Event-driven languages
	Scripting languages
	Other Language Types
	Translation methods
	Summary
	End of topic test

	High Level Language Constructs 1
	Introduction
	The Programming Environment
	Building applications
	Program Structure
	Data types
	Visual Basic Nomenclature
	Declaring Variables
	Declaring constants
	Variables and scope
	Operators
	Programming constructs
	The IF Statement
	The If.. Then.. Else Statement
	Nested IF Statements (optional)
	If...Then...ElseIf (optional)
	The Select Case Statement
	Summary
	End of topic test

	High Level Language Constructs 2
	Introduction
	Iteration
	Formatting output
	Do Loops
	Arrays
	Summary
	End of topic test

	Procedures and Standard Algorithms
	Introduction
	Modularity
	Procedures and Functions
	Functions
	Review Questions
	Standard Algorithms
	Summary
	End of topic test

	Glossary
	Hints for activities
	Answers to questions and activities
	 Features of Software Development Process
	 Design notation, data flow and evaluation
	 Personnel
	 Languages and Environments
	 High Level Language Constructs 1
	 High Level Language Constructs 2
	 Procedures and Standard Algorithms

